Vasiliev V. I., Kolesnik Yu. N., Berdichevskiy G. V. Native Fe-Ni from serpentinites of the Eastern-Sayan ultrabasic belt. Doklady Akademii Nauk SSSR. **1976.** Vol. 231. N 4. P. 969—972 (*in Russian*).

Zhmodik S. M., Agafonov L. V. Shandite and other nickel minerals from chromitites of ophiolite association in the southeast of East Sayan. Geologiya i Geofizika. **2000.** Vol. 41. N 5. P. 712—721 (*in Russian*).

Zulfiqar A., Bevan J. C. Awaruite, iridian awaruite, and a new Ru-Os-Ir-Ni-Fe alloy from the Sakhakot-Qila complex, Malakand Agency, Pakistan. Miner. Mag. **1981.** Vol. 44. P. 225–230.

Поступила в редакцию 4 сентября 2014 г.

УДК 552.1+550.423

3PMO, № 2, 2015 Zapiski RMO, N 2, 2015

© Д. чл. Н. Ю. ГРОШЕВ, д. чл. Т. В. РУНДКВИСТ, А. В. БАЗАЙ

НАХОДКА КОРДИЕРИТОВЫХ РОГОВИКОВ В ВЕРХНЕМ РАССЛОЕННОМ ГОРИЗОНТЕ ЗАПАДНО-ПАНСКОГО ПЛАТИНОНОСНОГО МАССИВА НА КОЛЬСКОМ ПОЛУОСТРОВЕ

Геологический институт Кольского НЦ РАН, 184209, Апатиты, ул. Ферсмана, 14; e-mail: nikolaygroshev@gmail.com

Ксенолит герцинит-плагиоклаз-кордиеритовых роговиков обнаружен в керне скважины в нескольких метрах выше по разрезу над анортозитами Южного платиноносного рифа. Впервые в Западно-Панском массиве в роговиках установлены минералы платиновых металлов и золото. В подтверждение концепции мультифазности платиноносных массивов Кольского полуострова приведены данные, которые позволяют предположить, что протолитом для роговиков являлись основные породы федорово-панского комплекса.

Ключевые слова: роговик, ксенолит, кордиерит, шпинель, расслоенная интрузия, габбронорит, элементы платиновой группы, Южный риф, федорово-панский комплекс.

N. Yu. GROSHEV, T. V. RUNDQVIST, A. V. BAZAI. FIND OF CORDIERITE HORNFELS IN THE UPPER LAYERED HORIZON OF THE WEST-PANA PLATINUM-BEARING MASSIF AT KOLA PENINSULA

Geological Institute, Kola Science Centre of RAS. Apatity

A xenolith of hercynite-plagioclase-cordierite hornfels was found in the core of a drill-hole in the West-Pana massif. This xenolith occurs there in several meters above the main anorthosite layer of the South platinum-bearing Reef in the Upper Layered Horizon (ULH). Platinum group minerals and gold were detected in these hornfels for the first time in the West-Pana massif, and this event confirms the concept of multiphase character of the PGM mineralization there. Basic rocks of the Fedorov-Pana complex are assumed to be a protolith of the hornfels, so, obtained data support probably the multiphase formation idea for other platinum-bearing intrusions in Kola Peninsula.

Key words: hornfels, xenoliths in layered intrusions, contact metamorphism, platinum group elements, South Reef, Fedorov-Pana complex.

введение

Ксенолиты контактово-метаморфических пород (роговиков), обычные для краевых зон расслоенных интрузивов (The Stillwater.., 1985), встречаясь в их центральных частях, всегда вызывают чрезвычайный интерес у исследова-

телей и приводят к генетическим дискуссиям (Бартенев, Докучаева, 1975; Карпов, 1999; Расслоенные.., 2004; Корчак Ю.А., 2008). Особое внимание вызывают ситуации, когда роговики обнаруживаются в критических зонах (Расслоенные.., 2004) в тесной ассоциации с месторождениями цветных и платиновых металлов (пример — месторождения Терраса и Нюд-II в Мончеплутоне).

Впервые в критической зоне Западно-Панского массива (ЗПМ) нами был обнаружен ксенолит контактово-метаморфических пород. Обогащенные кордиеритом роговики встречены в керне скважины в Верхнем расслоенном горизонте (ВРГ), в толще габброноритов над Южным платиноносным рифом. Данные по петрогенным и рассеянным элементам и минералогические характеристики показывают, что протолитом для роговиков, по-видимому, являются основные породы федорово-панского комплекса. В рамках настоящего исследования в роговиках ЗПМ впервые установлены минералы платиновых металлов и золото.

Минеральный состав роговиков и вмещающих пород изучался в прозрачных и прозрачно-полированных комбинированных шлифах. Главные породообразующие минералы диагностировались микроскопически и методами рентгенофазового и микрозондового (MS-46 Cameca) анализа, остальные минералы — с помощью сканирующего электронного микроскопа LEO 1450. Оценка их химического состава выполнена с помощью энергодисперсионного анализатора Quantax200. Химический состав пород опрделялся атомно-абсорбционным методом в Химико-аналитической лаборатории ГИ КНЦ РАН (г. Апатиты) и методом масс-спектрометрии с индуктивно связанной плазмой в ЦКП «Геоаналитик» УрО РАН (г. Екатеринбург).

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

ЗПМ (рис. 1) является центральным и наиболее крупным массивом федорово-панского расслоенного комплекса, расположенного в центральной части Кольского полуострова. Комплекс занимает межформационное положение между архейскими образованиями и вулканогенно-осадочными породами зоны карелид Имандра-Варзуга (рис. 1) и имеет сумийский (2526— 2447 млн лет) возраст (Вауапоva et al., 2009). Архейские породы представлены щелочными гранитами Кейвского блока и диорито-гнейсами Центрально-Кольского блока. Многочисленные исследования показали, что подобно наиболее крупным мафит-ультрамафитовым расслоенным комплексам Балтийского щита, мончегорскому и бураковскому (Расслоенные.., 2004; Богатиков и др., 2006; Шарков, 2006), образование федорово-панского комплекса происходило в условиях открытой магматической системы в несколько интрузивных фаз, когда в камеру периодически поступал расплав из области генерации магм (Козлов, 1973; Латыпов, Чистякова, 2000; Грошев и др., 2009).

ЗПМ — это крупное расслоенное тело преимущественно габброноритового состава протяженностью около 30 км. Слои пород погружаются на юго-запад под углами 30—40°, их максимальная мощность превышает 3800 м. В ЗПМ выделяются две критические зоны, представленные так называемыми расслоенными горизонтами — Нижним (НРГ) и Верхним (ВРГ). Считается, что критические зоны вместе с локализованной в них платинометалльной ми-

Рис. 1. Схема геологического строения Западно-Панского массива, с изменениями (по: Корчагин и др., 2009).

ЦМ — Цагинский габбро-анортозитовый массив архейского возраста; ФМ, ЛБ и ВПМ — соответственно Федоровотундровский массив, Ластъяврский блок и Восточно-Панский массив федорово-панского комплекса; 1 — вулканогенно-осадочные породы зоны Имандра-Варзуга; породы Западно-Панского массива: 2 — преимущественно габбронориты 3 — рудоносные расслоенные горизонты (РНГ — Нижний, ВРГ — Верхний), 4 — Оливиновый горизонт (OI); 5 — архейские щелочные граниты массива Белых тундр; 6 — архейские диорито-гнейсы; 7 — разрывные нарушения; 8 — элементы залегания расслоенности; 9 — предыдущие находки кордиеритовых роговиков по данным С. М. Карпова (1999); 10 — местоположение скважины BG-S-29.

Fig. 1. Scheme of geological structure of the West-Pana intrusion, with some amendments after (Korchagin et al., 2009).

нерализацией образовались в разные магматические фазы массива (Латыпов, Чистякова, 2000).

ВРГ, по современным представлениям (Корчагин и др., 2009), это залегающая под оливиновым горизонтом (рис. 1) толща габброноритов мощностью 100—150 м, содержащая прослои норитов и анортозитов. В основании ВРГ выделяется пласт анортозитов мощностью до 10 м. С кровлей данного пласта связано богатое малосульфидное платинометалльное оруденение, известное как Южный риф (Korchagin et al., 2005). Характерной особенностью Южного рифа является его прерывистость в сочетании с четким лито-стратиграфическим контролем. Относительно мощные линзы богатых руд в кровле анортозитового пласта протягиваются на 5—10 м, редко — на десятки метров, и выклиниваются. Временами наблюдается выклинивание и самого анортозитового пласта. Далее по простиранию руда вновь появляется на том же уровне разреза.

В период 2012—2013 гг. ОАО «Пана» на горе Каменник было пробурено около десятка скважин в рамках поисково-оценочных работ на Южном рифе. Во время этих работ по аналогии с месторождением Восточное Чуарвы (Казанов, Калинин, 2009) была предложена поисковая генетическая модель формирования богатых руд в структурных «ловушках» в процессе образования нового циклического тела над анортозитами рифа. Без специальных исследований и ввиду ограниченных объемов бурения циклическое тело и «ловушки» не были подтверждены. Однако в одной из скважин над анортозитами были встречены роговики. Скважина почти полностью пересекла ВРГ, в том числе мощное, в данном случае безрудное тело анортозитов, в кровле которо-

Рис. 2. Схематическая геологическая колонка по скважине BG-S-29. Справа в увеличенном масштабе показан ксенолит роговиков.

I — четвертичные отложения; 2 — роговики; 3 — лейкократовые габброиды и анортозиты; 4 — габбронориты и нориты; 5 — корунд-ставролитовые шлиры.

Fig. 2. Simplified geological column through the BG-S-29 drill hole; *at right* — the hornfels xenolith shown with magnification.

го обычно развит Южный риф (рис. 2). Роговики встречены в 5 м над этим телом, в интервале глубин 64.88—65.40 м. Сульфидная и платинометалльная минерализация (1.01 ppm Au+Pt+Pd, 0.20 % Cu, 0.06 % Ni, 0.47 % S) установлена только в этом интервале.

Роговики представлены голубовато-серыми полосчатыми мелкозернистыми породами, содержащими мелкие светлые корунд-ставролитовые шлиры, и залегают в среднезернистых массивных габброноритах (рис. 3, a1). Резкий верхний контакт роговиков подчеркнут полосой черного мелкозернистого гранобластового плагиоклазита мощностью около 1 см (рис. 3, a). Нижний контакт постепенный, контактовая зона также содержит гранобластовые плагиоклазиты и насыщена корунд-ставролитовыми шлирами (рис. 2, 3, c). Ксенолит роговиков имеет довольно сложное внутреннее строение. Внутри его

Рис. 3. Фотографии керна роговиков из ксенолита в Верхнем расслоенном горизонте.

а — верхний контакт роговиков и габброноритов, a1 — габбронорит (светлое — пироксены, серое — плагиоклаз), a2 — шпинель-плагиоклазовый роговик; б — средняя часть ксенолита, хорошо заметны скопления плагиоклаза (темное), тонкополосчатая текстура роговика и крупный корунд-ставролитовый шлир; б1 — шпинель-плагиоклаз-кордиеритовый роговик (светлое — кордиерит, серое — плагиоклаз, темные точки — шпинель); в — нижняя часть ксенолита роговиков, видна тонкополосчатая текстура проды с более крупными кордиеритовый прослоями (светлое); в1 — плагиоклаз-кордиеритовый роговик с тонкополосчатой текстурой; г — корунд-ставролитовые шлиры в нижнем контакте (г1) роговиков с габброноритами. На врезках сканированные изображения прозрачно-полированных шлифов. Стрелки указывают направление вниз скважины.

Fig. 3. Photographs of hornfels drill-core from the xenolith in the Upper layered horizon. Inlets — scanned images of thin sections; arrows — direction downward the drill-hole.

Рис. 4. Минеральные ассоциации и структурные особенности роговиков. Микрофотографии прозрачных шлифов.

а — полосчатая текстура плагиоклаз-шпинель-кордиеритового роговика, без анализатора (шлиф 29/65.27); б — пойкилобластовая структура шпинель-плагиоклаз-кордиеритового роговика, николи скрещены (шлиф 29/65.27а); в шпинель-плагиоклаз-кордиеритовый роговик, зерна кордиерита полностью замещены слюдистыми минерами, николи скрещены (шлиф 29/65.13); г — корунд-ставролитовый шлир, окруженный каймой минералов группы эпидота, без анализатора (шлиф 29/65.19); д — замещение шпинели сульфидами, магнетитом, ильменитом и корундом (полированный шлиф 29/65.27); е — строение шлира, сложенного ставролитом, корундом, мусковитом и сульфидами с каймой минералов группы эпидота (полированный шлиф 29/65.39); д, е — изображения в обратнорассеянных электронах. Обозначения минералов: Pl — плагиоклаз, Spl — шпинель, Crd — кордиерит, Crn — корунд, Ep — эпидот, St — ставролит, Su — сульфиды, Ccp — халькопирит, Po — пирротин, Pn — пентландит, Mag — магнетит, IIm — ильменит, Ms — мусковит, Chl — хлорит.

Fig. 4. Mineral associations and textural features of hornfels. Photomicrographs of thin sections (a-e), and some BSE images (∂, e) .

перемежается несколько переходящих друг в друга минеральных разновидностей роговиков, слагающих слойки, линзы и пятна размером от 1 до 6 см в поперечнике. Внутри интервала также присутствуют содержащие кордиерит участки габброноритового состава. По соотношению шпинели, плагиоклаза и кордиерита можно условно выделить следующие разновидности роговиков.

Таблица 1

				-	· · ·	,			
10	1	2	3	4	5	6	7	8	
компонент	29/65.25	29/65.27	29/65.19	29/65.13	29/65.07	29/64.81a	29/64.816	29/64.89	
SiO ₂	52.63	53.13	52.73	52.74	52.69	49.40	50.62	50.39	
Al_2O_3	28.57	29.83	28.74	29.57	29.16	31.18	30.35	29.92	
FeO	0.16	0.24	0.27	0.24	0.19	0.41	0.49	0.48	
CaO	12.29	11.79	12.34	11.87	12.60	14.89	13.77	14.86	
Na ₂ O	4.37	4.49	4.15	4.56	4.25	2.88	3.31	3.20	
K ₂ O	0.07	0.18	0.13	0.10	0.15	0.09	0.10	0.10	
Сумма	98.13	99.67	98.37	99.11	99.06	98.88	98.67	98.97	
	Коэффициенты в формуле (О = 8)								
Ca	0.608	0.573	0.609	0.581	0.618	0.738	0.681	0.736	
Na	0.392	0.395	0.371	0.404	0.378	0.285	0.297	0.287	
Κ	0.004	0.011	0.008	0.006	0.009	0.005	0.006	0.006	
Сумма	1.004	0.979	0.988	0.991	1.005	1.028	0.984	1.029	
Si	2.428	2.411	2.427	2.409	2.411	2.283	2.336	2.328	
Al	1.554	1.595	1.559	1.592	1.573	1.699	1.651	1.629	
Fe	0.007	0.009	0.011	0.009	0.007	0.016	0.019	0.019	
Сумма	3.989	4.015	3.997	4.010	3.991	3.998	4.006	3.976	
An	60.56	58.53	61.64	58.63	61.49	71.79	69.21	71.52	
Ab	39.04	40.34	37.55	40.77	37.61	27.72	30.18	27.89	
Or	0.40	1 1 2	0.81	0.60	0.89	0.48	0.61	0.58	

Химический состав плагиоклаза (мас. %) Chemical composition of plagioclase (wt %)

П р и м е ч а н и е. 1—5 — плагиоклазы из роговика; 6—8 — плагиоклазы из габбронорита. Анализ выполнен в Лаборатории физических методов исследования пород, руд и минералов ГИ КНЦ РАН с помощью микрозондового анализатора MS-46 САМЕСА, аналитик А. В. Базай.

1. Шпинель-кордиерит-плагиоклазовые роговики — породы с массивной текстурой и гранобластовой структурой (рис. 3, *a2*). Содержания кордиерита и шпинели варьируют от единичных зерен до 7—10 %. В незначительном количестве отмечается ортопироксен (для упрощения не учитывался при выделении разновидностей). Плагиоклазовые роговики слагают тонкие полосы и линзы в нижней части и становятся преобладающими в верхней части интервала.

2. Шпинель-плагиоклаз-кордиеритовые роговики — породы с неясно-полосчатой текстурой, гранобластовой и пойкилобластовой структурами (рис. 3, 61). Встречаются в нижней и преобладают в средней части интервала.

3. Плагиоклаз-шпинель-кордиеритовые роговики — относительно обогащенные шпинелью породы с тонкополосчатой текстурой, встречающиеся только в нижних частях интервала (рис. 3, *в1*).

Плагиоклаз в роговиках образует зерна неправильной формы размером от 0.2 до 4 мм, слагающие гранобластовый агрегат. Крупные зерна плагиоклаза заключают в себе выделения кордиерита (рис. 4, δ). Минерал бесцветный или буроватый, отчетливо видны полисинтетические двойники. Плагиоклаз из роговиков отличается от таблитчатого плагиоклаза из габброноритов не только по морфологии, но и по составу. Из данных табл. 1 видно, что количество

			/
10	1	2	3
Компонент	29/65.25	29/65.27	29/65.13
SiO	49.21	49.18	49.58
510 ₂	0.06	49.10	49.50
1102	22.61	24.60	24.91
AI_2O_3	33.01	34.60	34.81
FeO	2.73	3.08	2.84
MnO	0.05	0.05	0.90
MgO	11.77	11.64	12.83
CaO	0.13	0.18	0.11
Na ₂ O	0.15	0.37	0.26
K ₂ O	0.00	0.00	0.00
Сумма	97.71	99.09	100.52
	Коэффициенты в	формуле (O = 18)	
Si	4.974	4.917	4.886
Al	1.026	1.083	1.114
Сумма	6.000	6.000	6.000
Al	2.978	2.994	2.929
Ti	0.004	0.000	0.000
Fe ³⁺	0.047	0.076	0.168
Сумма	3.029	3.070	3.097
Mg	1.774	1.734	1.885
Fe ²⁺	0.178	0.172	0.047
Mn	0.005	0.004	0.007
Na	0.029	0.071	0.049
Ca	0.014	0.019	0.012
Сумма	2.000	2.000	2.000

Химический состав кордиерита (мас. %)

Chemical composition of cordierite (wt %)

анортитового компонента (An) в плагиоклазах из роговиков варьирует в пределах 58.5—61.6 %, что соответствует лабрадору. Плагиоклаз из габброноритов имеет состав, более близкий битовниту (An = 69.2—71.7). Обращает на себя внимание также пониженное количество примеси железа в плагиоклазе из роговиков (0.17—0.27 мас. %) по сравнению с плагиоклазом из габброноритов (0.42—0.49 мас. %). Как известно, железо в плагиоклазе ЗПМ связано с механической примесью тонкодисперсного магнетита, причем наибольшее ее количество установлено в первично-магматических плагиоклазах, в то время как метаморфогенные разновидности плагиоклаза содержат минимальное количество железа (Дудкин, Рундквист, 2002).

Кордиерит образует зерна неправильной формы размером до 2 мм. Зерна формируют гранобластовый агрегат совместно с плагиоклазом и шпинелью. Наблюдаются скопления кордиерита и шпинели в виде отдельных полос, что определяет полосчатую текстуру породы (рис. 3, *в*; рис. 4, *а*). Кордиерит замещается по трещинкам слюдистым минералом, близким по составу к мусковиту, и скаполитом. Данные табл. 2 показывают, что кордиерит имеет стехиометрический состав.

Химический состав герцинита (мас. %)

	1	2	3	4	5		
Компонент	29/65.25	29/65.27	29/65.19	29/65.13	29/65.07		
SiO2	0.08	0.00	0.24	0.13	0.27		
TiO ₂	0.05	0.07	0.08	0.17	0.00		
Al ₂ O ₃	57.90	57.38	56.69	57.70	55.18		
FeO	30.09	29.67	31.99	26.66	30.72		
MnO	0.26	0.22	0.15	0.23	0.30		
MgO	9.21	9.32	6.43	8.91	6.04		
CaO	0.03	0.00	0.04	0.00	0.08		
CoO	0.06	0.08	0.10	0.12	0.08		
NiO	0.20	0.19	0.24	0.21	0.23		
ZnO	0.31	0.40	0.52	2.08	0.25		
V_2O_5	0.19	0.25	0.22	0.43	0.28		
Cr ₂ O ₃	0.20	0.32	1.36	2.23	4.57		
Сумма	98.56	97.91	98.06	98.87	98.02		
Коэффициенты в формуле (O = 4)							
Si	0.002	0.000	0.007	0.004	0.008		
Al	1.914	1.910	1.911	1.899	1.867		
Cr	0.004	0.007	0.031	0.049	0.104		
Fe ³⁺	0.098	0.101	0.057	0.044	0.016		
Ti	0.001	0.002	0.002	0.004	0.000		
V	0.004	0.006	0.005	0.010	0.007		
Сумма	2.023	2.026	2.013	2.010	2.002		
Mg	0.385	0.392	0.274	0.371	0.259		
Ni	0.004	0.004	0.006	0.005	0.005		
Fe ²⁺	0.597	0.589	0.702	0.573	0.720		
Со	0.001	0.002	0.002	0.003	0.002		
Zn	0.006	0.008	0.011	0.043	0.005		
Mn	0.006	0.005	0.004	0.005	0.007		
Са	0.001	0.000	0.001	0.000	0.002		
Сумма	1.000	1.000	1.000	1.000	1.000		

Шпинель образует зерна овальной или неправильной формы (рис. 4, *a*, *b*). Большинство из них непрозрачно в шлифе, но мелкие зерна и краевые части более крупных зерен просвечивают зеленоватым или буроватым цветом (рис. 4, *e*). Зерна шпинели находятся как в виде включений в плагиоклазе и кордиерите, так и в интерстициях между зернами этих минералов. Размер зерен шпинели составляет от 0.001 мм до 0.2—0.4 мм. Включения в шпинели представлены удлиненными кристаллами ильменита, которые располагаются под углом 120°. В большинстве случаев шпинель частично или полностью замещена корундом, оксидами железа, мусковитом и сульфидами (рис. 4, *d*). Как видно из данных табл. 3, шпинель представлена герцинитом. Состав шпинели варьирует по количеству примесей. Обращают на себя внимание повышенные содержания Со, Ni, Zn.

Таблица 4

Chemical composition of pyroxene (wt %)									
	1	2	3	4	5				
Компонент	29/65.19	29/65.07a	29/65.076	29/64.89	29/64.81				
SiO ₂	54.89	52.15	52.10	55.38	55.28				
Al_2O_3	2.42	4.83	4.79	0.89	0.88				
TiO ₂	0.18	0.23	0.23	0.19	0.12				
FeO	11.84	12.41	12.42	11.95	11.83				
MnO	0.24	0.18	0.17	0.27	0.26				
MgO	27.94	26.10	26.07	27.59	27.88				
CaO	0.62	0.48	0.48	1.98	2.34				
Na ₂ O	0.00	0.00	0.00	0.00	0.00				
K ₂ O	0.00	0.00	0.00	0.00	0.00				
Cr ₂ O ₃	0.04	0.13	0.00	0.09	0.00				
V_2O_5	0.00	0.07	0.00	0.02	0.00				
NiO	0.00	0.04	0.00	0.07	0.10				
ZnO	0.00	0.00	0.00	0.00	0.00				
Сумма	98.18	96.64	96.28	98.43	98.70				
		Коэффициенты в	формуле (O = 6))					
Mg	1.498	1.429	1.431	1.484	1.497				
Fe	0.356	0.381	0.383	0.361	0.356				
Са	0.024	0.019	0.019	0.077	0.090				
Ti	0.005	0.006	0.006	0.005	0.003				
Mn	0.007	0.006	0.005	0.008	0.008				
Cr	0.001	0.004		0.003					
Ni		0.001		0.002	0.003				
V		0.002		0.001					
Al	0.077	0.124	0.126	0.036	0.029				
Сумма	1.968	1.972	1.970	1.977	1.986				
Si	1.975	1.915	1.918	1.998	1.991				
Al	0.025	0.085	0.082	0.002	0.009				
Сумма	2.000	2.000	2.000	2.000	2.000				

Химический состав пироксена (мас. %)

Примечание. 1—4 — пироксены из роговика; 5 — пироксен из норита.

Ортопироксен встречается в незначительном количестве в виде выделений неправильной формы размером до 1 мм в шпинель-кордиерит-плагиоклазовых роговиках. Микрозондовый анализ (табл. 4) показывает близость составов ортопироксенов из роговиков и из вмещающих габброноритов (19—21 мол. % Fs).

Рудные минералы в роговиках представлены главным образом пирротином, халькопиритом, пентландитом, пиритом, магнетитом, ильменитом, в единичных зернах встречается галенит. Они образуют вкрапленность с содержанием до 2—3 % об. Сульфидные минералы в роговиках находятся в трех различных структурно-генетических позициях: образуют тонкую вкрапленность в межзерновом пространстве и внутри зерен плагиоклаза и кордиерита; замещают герцинит в ассоциации с корундом и оксидами железа; содер-

Рис. 5. Минералы платиновых металлов и золото в роговиках.

а — зерно высоцкита, ассоциирующее с вкрапленностью пирротина и пентландита в сростке зерен (*темное*) корунда, хлорита, цеолитов и минералов группы эпидота; б — выделения сульфидов, стиллуотерита (?) и золота в плагиоклазе. Vys — высоцкит, Still — стиллуотерит, Gold — золото. Изображения в обратнорассеянных электронах (полированный шлиф 29/64.89).

Fig. 5. Platinum group minerals and gold in hornfels. Vys - vysotskite, Still - stillwaterite. BSE images, polished section 29/64.89

Таблица 5

Компонент	1	2	3	4	5	6	7	8	9	10
SiO ₂	48.48	44.78	52.67	49.02	42.36	45.12	45.46	43.21	48.22	49.24
TiO ₂	0.10	0.24	0.18	0.06	0.14	1.46	0.59	0.75	0.78	0.11
Al ₂ O ₃	25.12	28.87	15.25	24.41	33.88	23.11	29.85	24.96	22.16	19.41
Fe ₂ O ₃	0.23	2.89	0.55	0.27	1.04	3.23	4.63	5.66	_	2.17
FeO	5.07	4.70	5.12	3.32	6.00	10.92	5.74	6.31	15.23*	4.94
MnO	0.06	0.06	0.15	0.07	0.14	0.18	0.03	0.10	0.14	0.10
MgO	7.48	9.49	10.61	4.58	10.52	8.65	9.84	10.38	9.74	8.46
CaO	7.63	1.75	12.45	13.98	0.17	3.69	0.36	0.76	0.49	10.20
Na ₂ O	2.65	0.57	1.51	2.10	0.19	1.04	0.28	0.75	0.40	1.59
K ₂ O	0.37	0.82	0.12	0.19	0.46	0.82	0.36	0.38	0.54	0.33
H_2O^-	0.18	0.84	0.06	0.17		0.06	0.16	0.61	_	0.12
П.п.п.	1.91	4.58	0.97	1.35	5.15	2.03	1.93	5.32	1.58	1.96
F	0.004	_	0.058	0.059		_	_		_	0.004
Cl	0.009	_	0.008	0.010			_		_	_
S	0.47	0.79	0.05	0.09		0.10	1.29	0.16	0.74	0.75
Ni	0.06	_	0.033	0.024			_		_	0.060
Cu	0.20	_	0.008	0.014	_	_	_		_	0.040
Со	0.008	_	0.006	< 0.005	_	_	_		_	0.010
CO_2	<=0.1	_	0.100	< 0.1	_	_	_		_	< 0.1
Cr ₂ O ₃	0.040	0.100	0.016	0.011	_	_	0.110	_	0.160	0.070
V_2O_5	0.027	_	0.060	0.044	_	_	_	_	_	< 0.025
P_2O_5	0.050	0.020	0.010	0.020			_	_	_	0.020
Сумма	96.83	100.50	99.99	99.79	100.05	100.41	100.63	99.35	100.18	99.58

Содержания петрогенных элементов (мас. %) в роговиках и основных породах федорово-панского комплекса

Contents of major elements (wt %) in hornfels and mafic rocks of the Fedorov-Pana complex

Примечание. 1 — шпинель-плагиоклаз-кордиеритовые роговики, обр. ВG-S-29/65.0, гора Каменник; 2 — кордиеритовые роговики, обнажение 900/1360 (Карпов, 1999), гора Каменник; 3 и 4 — представительные образцы соответственно габброноритов (обр. BG-S-30/20.9) и анортозитов ВРГ (обр. BG-S-30/30.1), гора Каменник; ан. 1, 3 и 4 выполнены в рамках нашего исследования; 5 — гиперстен-кордиерит-шпинелевая порода, обр. 648-а, гора Нюд; 6 — гиперстен-кордиеритовый роговик, обр. 113-Н, гора Нюд; 8 — гиперстен-кордиерит-шпинелевая порода, обр. 549-а, терраса горы Нюд (Бартенев, Докучаева, 1975); 9 — средний состав по 23 безкварцевым кордиерит-гиперстеновым роговики з экзоконтакта массива Стиллуотер (The Stillwater., 1985); 10 — насыщенный корунд-ставролитовыми шлирами такситовый габбронорит из массива Федоровой тундры, обр. BG-F-973/336.2. Прочерк — компонент не определялся, * — FeO_{общ}.

жатся внутри корунд-ставролитовых шлиров. В тесной связи с сульфидной вкрапленностью в шлифах роговиков обнаружены мелкие зерна (до 20×30 мкм) минералов благородных металлов: стиллуотерита Pd₈As₃ (?), котульскита Pd(Te,Bi), высоцкита (Pd,Ni)S, гессита, золота (рис. 5).

Корунд-ставролитовые шлиры. На фоне роговиков отчетливо выделяются мелкие светлые зональные шлиры тонкозернистого материала, сложной неправильной формы с резкими границами (рис. 2; рис. 3, a, δ , c). Размер шлиров не превышает 2 см. Наиболее крупные и многочисленные шлиры наблюдаются вблизи нижнего контакта ксенолита роговиков, мелкие шлиры рассеяны по всему интервалу. Центральные части шлиров, по данным диагностики на электронном микроскопе, сложены тонкозернистым агрегатом, в

составе которого преобладают ставролит и корунд, а также содержатся сульфиды и слюдоподобный минерал, близкий по составу к мусковиту. Тонкая внешняя кайма шлиров сложена минералами группы эпидота с включениями пластинок мусковита. Преобладание корунда и ставролита позволяет предположить, что шлиры представляют собой мелкие резорбированные фрагменты высокоглиноземистых архейских метаосадков рамы ЗПМ.

Подобные шлиры мы наблюдали в одной из соседних скважин (BG-S-30) в норитах, перекрывающих рудоносные анортозиты. Необходимо отметить, что в некоторых породах других массивов федорово-панского комплекса также встречены аналогичные шлиры глиноземистых минералов. Например, в образце габброноритов (обр. BG-F-973/336.2) с платиновой минерализацией из такситовой зоны массива Федоровой тундры 5—10 % от объема породы сложено такими шлирами. По химическому составу эти габбронориты сопоставимы с изученными роговиками (табл. 5).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Первые находки пород, содержащих корунд, шпинель, кордиерит и другие типичные контактово-метаморфические минералы были в ЗПМ сделаны в конце 80-х годов ХХ века Н. Н. Веселовским. Позднее С. М. Карповым (1999) в ходе геологической съемки в центральных частях массива были обнаружены тела кордиеритовых роговиков в коренных обнажениях и близкоренных глыбах. Тела роговиков линзовидной, округлой или неправильной формы, по данным С. М. Карпова, имеют размер не более 1 м. Удлинение тел роговиков обычно согласное с общим простиранием вмещающих пород. Роговики окружены маломощной (5-10 см) каймой существенно-плагиоклазовых пород. В роговиках были определены кордиерит (около 90 %), плагиоклаз, шпинель (герцинит), магнетит, сульфиды, андалузит, кварц, корунд (Карпов, 1999). Сульфиды представлены пиритом, пирротином, халькопиритом и виоларитом. С. М. Карпов подчеркивает, что исследованные им роговики не содержат каких-либо значимых количеств элементов платиновой группы в отличие от прилегающих к ним габброноритов (0.3—0.5 ppm Au+Pt+Pd, до 5 ppm в одной из глыб). Кроме того, приводятся данные о химическом составе роговиков: они резко отличаются от габброноритов высоким содержанием Al₂O₃ (до 29 мас. %), низким содержанием кремния и кальция, а также на порядок большими, чем в габброноритах, содержаниями Pb, Sn и Cr. C. M. Карпов интерпретирует тела роговиков ЗПМ как ксенолиты вмещающих пород и проводит аналогию между ними и роговиками, описанными И.С. Бартеневым и В. С. Докучаевой (1975) в пределах критического горизонта горы Нюд в Мончегорском районе. Расположение тел роговиков в центральной части ЗПМ позволило предположить существование здесь краевой зоны на ранних этапах становления интрузива и наличие, следовательно, двух или более магматических камер, заполнявшихся соответственно во время разных магматических фаз.

Ксенолит роговиков в ВРГ размером около полуметра, так же как и контактово-метаморфические породы центральной части массива, окружен плагиоклазовой оторочкой, состоит преимущественно из кордиерита, содержит герцинит и обладает полосчатой текстурой. Однако в нем обнаружен целый ряд отличий, которые предполагают иную более сложную интерпретацию ге-

Таблица б

contents of these elements (if e /o) in normalis and rocks of the opper hypered normalis									
Элемент	1	2	3	4	Элемент	1	2	3	4
Li	3.42	2.83	24.74	_	Cs	0.12	0.17	0.87	1.47
Be	0.13	0.12	1.47	_	Ba	46.92	60.25	80.23	36.00
Sc	21.90	10.65	14.24	41.60	La	2.06	1.58	3.34	6.46
Ti	876.38	447.97	528.34	_	Ce	4.69	3.25	6.08	10.41
V	85.74	37.87	111.18	310.00	Pr	0.57	0.37	0.66	1.04
Cr	50.66	22.98	232.18	959.00	Nd	2.40	1.48	2.62	3.93
Mn	732.64	243.00	363.21	_	Sm	0.61	0.29	0.45	0.82
Со	36.14	19.08	46.32	_	Eu	0.21	0.23	0.39	0.54
Ni	252.12	174.16	524.03	486.00	Gd	0.54	0.28	0.42	0.95
Cu	23.80	86.09	1532.44	378.00	Tb	0.08	0.04	0.06	0.19
Zn	32.47	21.56	76.51	153.00	Dy	0.52	0.28	0.34	1.39
Ga	10.03	14.26	18.52	_	Но	0.11	0.05	0.07	0.36
Ge	1.24	0.84	0.89	_	Er	0.33	0.17	0.15	1.16
Rb	1.37	2.56	4.85	10.60	Tm	0.04	0.02	0.04	0.20
Sr	178.78	294.21	203.44	64	Yb	0.32	0.16	0.24	1.44
Y	2.43	1.27	1.05	8.80	Lu	0.05	0.02	0.04	0.25
Zr	10.49	5.59	10.91	45	Hf	0.35	0.16	0.41	1.37
Nb	0.53	0.25	0.15	6.30	Та	0.00	0.00	0.00	0.52
Мо	0.92	1.09	1.13	_	W	0.39	0.55	0.13	—
Ag	0.03	0.07	0.82	_	Tl	0.00	0.00	0.26	—
Cd	0.03	0.04	0.17	_	Pb	0.81	0.71	3.20	1.85
Sn	0.42	0.30	0.49	_	Bi	0.00	0.00	0.04	—
Sb	0.02	0.05	0.10	_	Th	0.35	0.17	0.23	1.70
Te	0.00	0.06	0.32	_	U	0.10	0.04	0.07	0.31

Содержания редких элементов (ppm) в роговиках и породах ВРГ Contents of trace elements (wt %) in hornfels and rocks of the Upper layered horizon

Примечание. 1—2 — представительные образцы соответственно габброноритов (обр. BG-S-30/20.9) и анортозитов (обр. BG-S-30/30.1) ВРГ, гора Каменник; 3 — шпинель-плагиоклаз-кордиеритовые роговики, обр. BG-S-29/65.0, гора Каменник; ан. 1—3 выполнены в ЦКП УрО РАН «Геоаналитик»; 4 — гиперстен-кордиеритовый роговик экзоконтакта массива Стиллуотер, обр. 291.5 (Thompson, 2008). Прочерк — элемент не определялся.

незиса этих пород. В минералогическом отношении роговики ВРГ отличаются прежде всего бо́льшим содержанием основного плагиоклаза (участками до 90 об. %), являющегося наряду с кордиеритом и шпинелью одним из главных породообразующих минералов. В изученных нами роговиках отмечается ортопироксен, состав которого близок к составу пироксена из вмещающих базитов, платинометалльная минерализация и корунд-ставролитовые шлиры, также присутствующие в некоторых основных породах федорово-панского комплекса. Перечисленные отличия не позволяют рассматривать роговики ВРГ как ксенолиты вмещающих пород.

В пользу такого вывода свидетельствуют геохимические особенности роговиков ВРГ. Для их изучения был выполнен полный химический анализ образца из керна скважины (табл. 5), сложенного шпинель-кордиерит-плагиоклазовой и шпинель-плагиоклаз-кордиеритовой разновидностями роговиков. Кроме того, в образце определено содержание 48 редких, в том числе редкоземельных, элементов (табл. 6) и проведено его сравнение с основными поро-

Рис. 6. Сравнение химического состава роговиков и пород федорово-панского комплекса.

Fig. 6. Comparison of chemical compositions between hornfels and rocks of the Fedorov-Pana complex.

дами федорово-панского комплекса, роговиками из центральной части ЗПМ, а также с роговиками из Мончеплутона и массива Стиллуотер. На рис. 6, *а* видно, что роговик ВРГ отличается повышенным содержанием кальция и низким содержанием калия относительно натрия по сравнению с ксенолитами из центральной части массива. В целом характер распределения петрогенных элементов изученного роговика более близок к анортозитам и габброноритам ВРГ, нежели к аналогичным контактово-метаморфическим породам ЗПМ, Мончеплутона или Стиллуотера (рис. 6, *a*). Интересно, что распределение петрогенных элементов в роговиках практически совпадает с их распределением в насыщенном корунд-ставролитовыми шлирами габбронорите из такситовой зоны массива Федоровой тундры (обр. BG-F-973/336.2). Как видно в табл. 6, по содержанию и спектру РЗЭ (рис. 6, *б*) роговик ВРГ также близок к основным породам и резко отличается от других контактово-метаморфических пород, несмотря на выделение среди вмещающих базитов по содержаниям Li, Cr, Tl и Pb (табл. 6).

Таким образом, полученные первые результаты позволяют наметить последовательность геологических событий, приведших к формированию изученных роговиков. Обломки высокоглиноземистых пород рамы, по-видимому, были захвачены базитовой магмой на раннем интрузивном этапе, в процессе внедрения первых порций расплава. Они были в значительной степени растворены и сохранились только в виде скоплений мелких корунд-ставролитовых шлиров. Насыщенные этими шлирами базиты в свою очередь были захвачены новой порцией расплава и подверглись контактовому высокотемпературному воздействию. Обломки этих пород сохранились в виде ксенолитов роговиков, которые содержат мелкие ксенолиты пород рамы. Наблюдаемые взаимоотношения пород можно описать как «ксенолит в ксенолите». По-видимому, такие структуры являются свидетельством мультифазности массивов федорово-панского комплекса.

а — спектры распределения петрогенных элементов (мас. %). 1 — анортозит ВРГ (обр. BG-S-30/30/1); 2 — габбронорит ВРГ (обр. BG-S-30/20.9); 3 — насыщенный корунд-ставролитовыми шлирами такситовый габбронорит массива Федоровой тундры (обр. BG-F-973/336.2); 4 — роговики из экзоконтакта массива Стиллуотер; 5 — поле составов роговиков Мончеплутона; б — хондрит-нормализованные распределения редкоземельных элементов для роговиков, а также для габброноритов (10 анализов) и анортозитов (9 анализов) ВРГ. Нормировано (по: McDonough, Sun, 1995).

Находка ксенолита в перекрывающей толще имеет большое значение для расшифровки генезиса платинометалльной минерализации Южного рифа. На наш взгляд, наличие здесь роговиков свидетельствует об участии дополнительного внедрения магмы в образовании и перераспределении богатых руд рифа. Необходимо детальное изучение кумулусной стратиграфии и скрытой расслоенности основных пород для доказательного выделения внутри ВРГ циклического тела, или ритмической единицы, сформированной в результате этого дополнительного внедрения.

Авторы благодарят генерального директора ОАО «ПАНА» А. У. Корчагина за возможность использования материалов бурения. Исследования проводились при финансовой поддержке гранта РФФИ (№ 11-05-00061-а).

Список литературы

Бартенев И. С., Докучаева В. С. Геолого-структурные особенности и условия образования месторождения Нюд-II / Основные и ультраосновные породы Кольского полуострова и их металлогения. Апатиты: Изд-во КФАН СССР, **1975.** С. 144—158.

Богатиков О. А., Богина М. М., Бубнов С. Н. и др. Типы магм и их источники в истории Земли. Ч. 1. Магматизм и геодинамика — главные факторы эволюции Земли. М.: ИГЕМ РАН, **2006.** 398 с.

Грошев Н. Ю., Ниткина Е. А., Митрофанов Ф. П. Двухфазный механизм формирования платинометалльного базитового Федорово-Тундровского массива, Кольский полуостров // Докл. РАН. **2009.** Т. 427. № 5. С. 669—673.

Дудкин К. О., Рундквист Т. В. О связи магнитных аномалий Панского массива с распространением в породах бурых плагиоклазов // Вестник МГТУ. **2002.** Т. 5. № 1. С.107—118.

Казанов О. В., Калинин А. А. Геологическое строение и платинометалльная минерализация Восточно-Панского массива / Стратегические минеральные ресурсы — основа устойчивого развития Севера. Апатиты: Изд-во КНЦ РАН, **2008.** С. 56—67.

Карпов С. М. Кордиеритовые роговики в расслоенном массиве Панских тундр / Геология и полезные ископаемые Северо-Запада и центра России. Материалы X конференции, посвященной памяти К.О. Кратца. Апатиты: Изд-во КНЦ РАН, **1999.** С. 47—51.

Козлов Е. К. Естественные ряды пород никеленосных интрузий и их металлогения. Л.: Наука, **1973.** 283 с.

Корчак Ю. А. Минералогия пород ловозерской свиты и продуктов их контактово-метасоматического преобразования в щелочных массивах. Автореф. канд. дис. С.-Петербург, **2008.** 26 с.

Корчагин А. У., Субботин В. В., Митрофанов Ф. П., Минеев С. Д. Платинометалльное месторождение Киевей в Западно-Панском расслоенном массиве: геологическое строение и состав оруденения / Стратегические минеральные ресурсы Лапландии — основы устойчивого развития Севера. Апатиты: Изд-во КНЦ РАН, **2009.** С. 12—32.

Латыпов Р. М., Чистякова С. Ю. Механизм дифференциации расслоенного интрузива Западно-Панских тундр. Апатиты: Изд-во КНЦ РАН, **2000.** 315 с.

Расслоенные интрузии Мончегорского рудного района: петрология, оруденение, изотопия, глубинное строение. Часть 1. Апатиты: Изд-во КНЦ РАН, **2004.** 177 с.

Шарков Е. В. Формирование расслоенных интрузивов и связанного с ними оруденения. М.: Научный мир, **2006.** 368 с.

References

Bartenev I. S., Dokuchaeva V. S. Geology and formation conditions of the Nyud-II deposit. In: Basic and ultrabasic rocks of the Kola Peninsula and their metallogeny. Apatity : Kola Science Centre of USSR Academy of Sciences, **1975.** P. 144—158 (*in Russian*).

Bayanova T., Ludden J., Mitrofanov F. Timing and duration of Palaeoproterozoic events producing ore-bearing layered intrusions of the Baltic Shield: metallogenic, petrological and geodynamic implications. In: Reddy S.M., Mazumder R., Evans D.A.D. & Collins A.S. (eds). Palaeoproterozoic Supercontinents and Global Evolution. Geol. Soc. London Spec. Publ. 2009. Vol. 323. P. 165–198.

Bogatikov O. A., Bogina M. M., Bubnov S. N. et al. Types of magmas and their sources in the Earth's history. Part 1. Magmatism and geodynamic as main factors of the Earth's evolution. Moscow: IGEM RAS, **2006.** 398 p. (*in Russian*).

Dudkin K. O., Rundqvist T. V. About a relationship between magnetic anomalies of the Pana massif and the proportion of brown plagioclase in rocks. Vestnik MSTU. **2002.** Vol. 5. N 1. P. 107—118 (*in Russian*).

Groshev N. Yu., Nitkina E. A., Mitrofanov F. P. A two-phase mechanism of formation of the Fedorov-Tundrovsky Pt-bearing basic massif, Kola Peninsula. Dokl. Earth Sci. **2009.** Vol. 427. N 5. P. 669—673 (*in Russian*).

Karpov S. M. Cordierite hornfels in the layered Pana intrusion. In: Geology and mineral resources of North-West and Center of Russia. Proc. 10th conference devoted memory of K. O. Kratz. Apatity: KSC RAS, **1999.** P. 47—51 (*in Russian*).

Kazanov O. V., Kalinin A. A. Geology and Pt mineralization of the Eastern-Pana massif. In: Strategic mineral resources — the base of the stable development of the North. Apatity: KSC RAS, **2008.** P. 56—67 (*in Russian*).

Korchagin A., Mitrofanov F., Subbotin V., Goncharov J., Vursiy G., Rundqvist T. Geology and comparison of PGE mineralization of the Northern and Southern Reefs of the West-Pana layered intrusion (Kola Peninsula, Russia). In: 10th International Platinum Symposium «Platinum-Group Elements — from Genesis to Beneficiation and Environmental Impact», August 8—11, 2005, Oulu, Finland. Extended Abstracts. Geol. Surv. Finland, Espoo, **2005.** P. 154—157.

Korchagin A. U., Subbotin V. V., Mitrofanov F. P., Mineev S. D. Kievey Pt deposit in the Western-Pana layered massif: geology and ore composition. In: Strategic mineral resources of Lapland — the base of the stable development of the North. Apatity: KSC RAS, **2009.** P. 12—32 (*in Russian*).

Korchak Yu. A. Mineralogy of Lavozero suite rocks and products of their contact metasomatism in alkali massifs. Ph. D. thesis syn. St. Petersburg, **2008.** 26 p. (*in Russian*).

Kozlov E. K. Natural series of Ni-bearing intrusion rocks and their metallogeny. Leningrad: Nauka, **1973.** 283 p. (*in Russian*).

Latypov R. M., Chistyakova S. Yu. Mechanism for differentiation of the Western-Pana layered intrusion. Apatity: KSC RAS, **2000.** 315 p. (*in Russian*).

Layered intrusions of the Monchegorsk ore region: petrology, mineralization, isotopy, deep structure. Part 1. Apatity: KSC RAS, **2004.** 177 p. (*in Russian*).

McDonough W. F., Sun S. S. Composition of the Earth . Chem. Geol. **1995.** Vol. 120. P. 223–253. *Sharkov E. V.* Formation of layered intrusions and related mineralization. Moskow: Nauchny mir, **2006.** 368 p. (*in Russian*).

The Stillwater Complex, Montana: geology and guide. Ed. by Czamanske G. K., Zientek M. L. Montana Bureau of Mines and Geology: Special Publication 92, **1985.** 396 p.

Thompson J. A. Beneath the Stillwater Complex: Petrology and geochemistry of quartz-plagioclase-cordierite (or garnet)-orthopyroxene-biotite \pm spinel hornfels, Mountain View area, Montana. Amer. Miner. **2008.** Vol. 93. P. 438—450.

Поступила в редакцию 29 сентября 2014 г.