Элементы-примеси и характер их распределения в шеелите из гумбеитов Шарташского массива (Березовское рудное поле)

Сидорова Н.В., Жиличева О.М., Минервина Е.А.

Институт геологии рудных месторождений ИГЕМ РАН, Москва, nsidorova989@mail.ru

Аннотация. В работе приведены новые данные по составу, полученному методом ЛА-ИСП-МС, и распределению микроэлементов в шеелите из сульфидно-шеелит-кварцевого прожилка в гумбеитах Шарташского массива (Березовское рудное поле). При катодолюминесцентном исследовании в кристаллах шеелита была выявлена тонкая осцилляторная зональность с чередованием зон с темно-синим, голубоватым и зеленоватым оттенками люминесценции. С помощью ЛА-ИСП-МС профилирования было выявлено обогащение внешних зон (с зеленоватым оттенком люминесценции) Na, Y и HREE с постепенным снижением их концентрации к центральным зонам кристаллов. Содержание цериевых редких земель постепенно увеличивается к центральным зонам кристаллов. Также неоднородное распределение в кристаллах шеелита установлено для урана и тория. Величина Eu/Eu* в шеелите изменяется от 0.8 до 5.6, при этом установлена значимая степень корреляции Eu/Eu* и U (r = 0.6) с Th (r = 0.77). При сравнении состава шеелита Шарташского массива и даек Березовского месторождения были выявлены резкие отличия по содержанию Sr: в шарташском шеелите его содержание почти на порядок выше. Это может быть связано с разной глубиной формирования Шарташских и Березовских метасоматитов. Спектры распределения РЗЭ шарташского и березовского шеелита имеют схожую «куполообразную» форму. При этом в шарташских спектрах проявлена как положительная, так и отрицательная Eu-аномалия. По экспериментальным данным такие выпуклые REE_N спектры с преобладанием MREE свойственны шеелиту, в который редкоземельные элементы изоморфно входят по схеме 2Ca²⁺ = REE³⁺ + Na⁺. Для шарташского шеелита такая схема изоморфизма подтверждается поведением Na и РЗЭ в профилях абляции.

Ключевые слова: шеелит, катодолюминисценция, ЛА-ИСП-МС, гумбеиты, Шарташский массив, Березовское рудное поле, Средний Урал.

Trace elements and their distribution in scheelite from gumbeites of the Shartash massif (Berezovsky ore field)

Sidorova N.V., Zhilicheva O.M., Minervina E.A.

Institute of Geology of Ore Deposits IGEM RAS, Moscow, nsidorova989@mail.ru

Abstract. The paper presents new data on the composition obtained by the LA-ICP-MS method and the distribution of trace elements in scheelite from the sulfide-scheelite-quartz vein in the gumbeites of the Shartash massif (Berezovsky ore field). A cathodoluminescent study revealed a fine oscillatory zoning in scheelite crystals with alternating zones with dark blue, bluish and greenish shades of luminescence. LA-ICP-MS profile scanning revealed the enrichment of outer crystals zones (with greenish tone of luminescence) by Na, Y and REE with a gradual decrease in their concentration towards the central zones of crystals. The content of cerium rare earths is gradually increasing towards the central zones of crystals. Also U and Th have inhomogeneous distribution in scheelite crystals. The value of Eu/Eu* in scheelite varies from 0.8 to 5.6 and there is a significant degree of correlation between Eu/ Eu* and U (r = 0.6) c Th (r = 0.77). Comparing the composition of scheelite from the Shartash massif with dykes of the Berezovsky deposit showed sharp differences in the content of Sr: in the Shartash and Berezovsky metasomatites. In the Shartash spectra, both positive and negative Eu anomaly is manifested. According to experimental data, such convex REEN spectra with a predominance of MREE are characteristic of scheelite, where REE are isomorphically included according to the scheme $2Ca^{2+} = REE^{3+} + Na^+$. For the Shartash scheelite, such an isomorphism scheme is confirmed by the behavior of Na and REE in ablation profiles.

Keywords: scheelite, cathodoluminescence, LA-ICP-MS, gumbeites, Shartash massif, Berezovsky ore field, Middle Urals.

Введение

Шеелит распространен на многих типах гидротермальных месторождений, где может быть как акцессорным, так и основным рудным минералом. И в том и в другом случае шеелит является важным индикатором физико-химических условий минералообразования, а с помощью прецизионных методов анализа минерального вещества выявляются новые особенности его состава для месторождений разных генетических типов (Плотинская и др., 2018; Коваленкер и др., 2019; Нагорная и др., 2020).

На Южном и Среднем Урале известно несколько шеелитовых проявлений, приуроченных к метасоматитам гумбеитовой формации. Это Гумбейская группа месторождений шеелита, которые контролируются интрузивами монцонитового гумбейского комплекса. И несколько проявлений в пределах и на периферии Березовского рудного поля (Кедровское месторождение, Шарташское и Кузнецовское рудопроявления), которые контролируются интрузивами гранодиоритового шарташского комплекса (Спиридонов и др., 1997). В пределах Березовского месторождения (Центральная часть Березовского рудного поля) шеелит в качестве акцессорного минерала встречается в сульфидно-кварцевых «лестничных» жилах среди березитизированных гранитных даек (Бакшеев, Беляцкий, 2011).

В настоящей работе описываются особенности состава и распределения элементов-примесей в шеелите из гумбеитов Шарташского массива (Южная часть Березовского рудного поля) и приводится сравнение его состава с таковым шеелита из даек Березовского месторождения.

Шарташский гранитоидный массив находится на периферии Березовского месторождения и относится к золотоносным надсубдукционным массивам габбро-тоналит-гранодиорит-гранитной серии каменноугольного возраста. Для апикальных и надинтрузивных зон таких массивов характерно формирование крупных дайковых полей с последующим интенсивным развитием в дайках золотоносных кварцевых жил (Ферштатер и др., 2010). По гравиметрическим данным Шарташский массив представляет собой один из выходов на дневную поверхность Большого Шарташского плутона. В пределах Березовского месторождения кровля массива фиксируется на глубине до 4 км (Белавин и др., 1970). Вмещают массив вулканогенно-осадочные породы О–S, метаморфизованные в условиях зеленосланцевой и низов амфиболитовой фации, и породы дунит-гарцбургитовой формации, измененные до тальк-карбонатной фации (Калугина и др., 2017).

В пределах Шарташского массива широко развиты метасоматиты гумбеитовой формации, которые могут сопровождаться кварцевыми жилами с шеелитом (Куруленко и др., 1984; Спиридонов и др., 1997; Прибавкин, 2015).

Материалы и методы

Шеелит был отобран из шеелит-сульфидно-кварцевого прожилка, мощностью до 25 мм с небольшим ореолом околожильного изменения (10-15 мм), наложенного на среднезернистые граниты 2-й фазы. Шеелит бледно-розового до белого цвета, слагает гнезда из мелкозернистых агрегатов, на которые нарастают гипидиоморфные дипирамидальные кристаллы. Шеелит в кварцевом прожилке встречается в срастании с Мп-содержащим кальцитом (до 2.3 мас. % Мп), зональным W-рутилом (до 4.5 мас. % W), сульфидами (пиритом, бурнонитом, галенитом, тетраэдритом).

Химический состав шеелита был изучен с помощью аналитического комплекса с комбинированной системой микроанализа на базе СЭМ Jeol JSM-6480 LV в лаборатории локальных методов исследований кафедры петрологии МГУ; аналитик – Н.Н. Коротаева.

Катодолюминесцентные (CL) исследования шеелита проведены в ИГЕМ РАН на рентгеновском микроанализаторе Cameca MS-46. Исследования цветной катодолюминесценции (ЦКЛ) шеелита проводили в режиме расширенного зонда и растра 350х300 мкм при ускоряющем напряжении 20 кВ, токе 10 нА. Время экспозиции одного кадра в режиме сканирования 30 и 45 с.

Для определения характера распределения микропримесей шеелит был проанализирован на квадрупольном масс-спектрометре Thermo XSeries 2, оснащенном лазерной абляционной си-

Рис. 1. CL-изображение кристалла шеелита с профилями абляции, обозначенными буквами. Диаметр лазерного пучка – 40 мкм. Аналитический сигнал вольфрама на графиках не указан.

Fig. 1. CL-image of a scheelite crystal with ablation profiles; the letters indicate the positions of the ablation profiles. The diameter of the laser beam is 40 μ m. The analytical signal of tungsten is not indicated on the graphics.

стемой New Wave Research UP-213 (LA-ICP-MS); внешние калибровочные стандарты G-NIST 610 и G-NIST 612; внутренний стандарт (IS) для шеелита – ⁴⁴Са; лаборатория ИГЕМ РАН.

Результаты

При сканировании поверхности зерен шеелита на электронном микроскопе была выявлена неоднородность состава, выраженная в небольшой вариации примеси Sr (до 3 мас. %). Количество молибдена и редкоземельных элементов ниже предела обнаружения.

При CL-исследовании в кристаллах шеелита была выявлена тонкая осцилляторная зональность с чередованием зон с темно-синим, голубоватым и зеленоватым оттенками люминесценции (рис. 1). При этом к краям кристаллов увеличивается ширина зон с зеленоватым оттенком люминесценции.

Полученные по результатам LA-ICP-MS микроэлементы в шеелите можно разделить на 2 группы. Первая – постоянно присутствующие элементы-примеси, обнаруженные в 100% аналитических проб и приведенные в таблице 1. Также в 100 % проб абляции встречается кремний (125–15900 при среднем значении 490 г/т). Вторая группа – элементы, с частотой встречаемости 50–96 %. Элементы второй группы могут быть связаны с включениями других минералов в шеелите.

Таблица 1. Диапазон концентраций и средние содержания (г/т) микроэлементов в шеелите, по данным LA-ICP-MS. Количество проб абляции n=90.

	according to LA-ICP-MS. The number of ablation samples $n=90$.													
Эл-т	Na	Mg	Mn	Fe	Sr	Y	Nb	Мо	La	Ce	Pr	Nd	Sm	
мин	59	0.3	2.8	11	2530	71	0.5	0.3	17	99	29	231	133	
макс	390	41	15	400	4460	697	3.8	7.7	130	398	101	771	370	
ср. а.	85	1.6	5.2	33	3308	274	1.3	1.6	45	223	61	471	244	
Эл-т	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Та	Pb	Th	U	
мин	50	121	15	50	3.9	4.5	0.2	0.7	0.04	0.01	16	0.05	0.01	
макс	300	453	70	335	44	63	4.3	13	0.9	0.2	60	4	3.3	
cp. a.	153	250	34	144	16	22	1.4	4.3	0.3	0.03	29	0.8	0.4	

Table 1. The range of concentrations and average contents (ppm) of trace elements in scheelite, according to LA-ICP-MS. The number of ablation samples n= 90.

Среди них (в скобках указано максимальное по выборке значение в г/т): литий (1.7), сера (800), кобальт (0.2), никель (7), цинк (4), мышьяк (9), барий (130). Сигналы этих элементов в спектрах абляции образуют синхронные пики, что свидетельствует о наличии включений и микровростков других минералов в шеелите. Например, синхронные пики Ва-Mg-Fe-Si-Na указывают на включение мусковита, Mg-Mn-Ba-карбоната и т.д.

При прохождении профилей абляции поперек зональности (рис. 1) было выявлено обогащение внешних зон (с зеленоватым оттенком люминесценции) Y, MREE и HREE с постепенным снижением их концентрации к центральным зонам кристаллов. Содержание цериевых редких земель постепенно увеличивается к центральным зонам кристаллов. Обращает на себя внимание поведения Na, который плавно накапливается к внешним зонам кристаллов. Также неоднородное распределение в кристаллах шеелита установлено для урана и тория, а их максимальные концентрации установлены в наиболее темных зонах (рис. 1). Величина Eu/Eu* в шеелите изменяется от 0.8 до 5.6, при этом положительная Eu-аномалия характерна, как правило, для центральных и темных зон кристаллов, обогащенных U и Th. Это подтверждает значимая степень корреляции Eu/Eu* и U (r= 0.6) с Th (r= 0.77). Для внешних зон кристаллов характерна слабая положительная или слабая отрицательная европиевая аномалия.

Сравнение состава шеелита Шарташского массива и даек Березовского месторождения

Также методом LA-ICP-MS был проанализирован шеелит из кварцевых жил трех даек Березовского месторождения – Севастьяновской, Второ-Павловской (ВПД) и Перво-Павловской (ППД). Шеелит из разных образцов резко отличается по содержанию Sr: максимальные концентрации в гумбеитовом шеелите Шарташа (до 4400 г/т Sr при среднем содержании – 3300 г/т); шеелит из кварцевых жил ВПД содержит в среднем 1300 г/т Sr; шеелит из кварцевых жил ППД – 700 г/т Sr; шеелит из кварцевых жил Севастьяновской дайки – 500 г/т Sr. Количество молибдена во всем шеелите низкое, тем не менее, в шарташском шеелите всё же несколько выше (табл. 1), чем в бе-

Рис. 2. Распределение РЗЭ, нормированных по хондриту, в шеелите Шарташского массива (Шар) с минимальным и максимальным Eu/Eu* значением и Березовского месторождения (Бер).

Fig. 2. Distribution of REE normalized by chondrite in the scheelite of the Shartash massif (Shar) with the minimum and maximum Eu/Eu* value and the Berezovsky deposit (Ber). резовском (до 0.3 г/т при среднем содержании 0.15). Средние содержание иттрия, легких и тяжелых лантаноидов в Шарташском шеелите – соответственно, 270, 1200 и 470 г/т; в Березовском – 550–650, 900–1000 и 830–920 г/т. Спектр распределения РЗЭ шеелита гумбеитов Шарташского массива и березитов Березовского месторождения имеет схожий «куполообразный» вид (рис. 2), при этом в шарташских спектрах проявлена как положительная, так и отрицательная Eu-аномалия.

Заключение

Детально изучен состав и распределение микроэлементов в шеелите из сульфидно-кварцевых жил в гумбеитах Шарташского массива, кратко приведены его основные отличия от состава и распределения микроэлементов в шеелите из сульфидно-кварцевых жил даек Березовского месторождения.

С помощью катодолюминесценции и LA-ICP-MS выявлено зональное распределение Na, Y, Ln, U и Th в кристаллах шарташского шеелита. РЗЭ спектр, нормированный по хондриту, имеет выпуклый вид с преобладанием MREE и варьирующей величиной Eu/Eu*. Экспериментально подтверждено, что при увеличении количества Na в шеелите (Nassau, Loiacono, 1963) в его структуру охотнее изоморфно входят средние лантаноиды (Sm-Gd), чем легкие или тяжелые, и из-за этого нормированный РЗЭ-спектр имеет выпуклый горбообразный вид (Ghaderi et al., 1999). Изменение соотношения HREE и LREE в процессе роста кристалла может происходить вследствие смены окислительной обстановки на восстановительную. Об этом также свидетельствует изменение величины Eu/Eu* от центра к краям кристаллов. Повсеместное неравномерное распределения U и Th и высокую степень их корреляции связывают с включениями ураноторита в шеелите (Коваленкер и др., 2019). Это вполне может объяснить высокую корреляционную связь U, Th и Eu/Eu*. Однако, отсутствие корреляции урана и тория с кремнием, противоречит этому предположению.

Согласно (Спиридонов и др., 1999), в шеелите плутоногенных гидротермальных золотокварцевых месторождений с ростом глубинности формирования снижается содержание стронция. Этим может быть обусловлена разница в содержании Sr Березовского и Шарташского шеелита.

Полученные данные могут быть использованы для уточнения эволюции процессов рудообразования.

Работа выполнена в рамках темы гос. задания ИГЕМ РАН.

Литература

- 1. Бакшеев И.А., Беляцкий Б.В. Sm-Nd И Rb-Sr изотопные системы шеелита Березовского золоторудного месторождения (Средний Урал) // Литосфера. 2011. № 4. С. 110–118.
- 2. Белавин О.В., Вагшаль Д.С., Ниренштейн В.А. Шарташский гранитный массив (Средний Урал) и связь с ним золотого оруденения // Изв. АН СССР. Серия Геологическая. 1970. №.6. С. 86–90.
- Калугина Р.Д., Копанев В. Ф., Стороженко Е.В. и др. Государственная геологическая карта Российской Федерации. Масштаб 1 : 200 000. Издание второе. Серия Среднеуральская. Лист О-41-XXV. Объяснительная записка. М. Изд-во: Московский филиал ФГБУ «ВСЕГЕИ». 2017. 156 с.
- Коваленкер В.А., Плотинская О.Ю., Киселева Г.Д., Минервина Е.А., Борисовский С.Е., Жиличева О.М., Языкова Ю.И. Шеелит скарново-порфирового Си-Аи-Fe месторождения Быстринское (Восточное Забайкалье, Россия): генетические следствия // ГРМ. 2019. Т. 61. №6. С. 61–488. https://doi.org/10.31857/ S0016-777061667-88
- 5. Куруленко Р.С., Траянова М.В., Кобузов А.С., Яблонская Л.В. Шеелитовая минерализация кварцевых жил Шарташского массива // Ежегодник-1983 ИГГ УНЦ АН СССР. 1984. С. 104–105.
- 6. Нагорная Е.В., Бакшеев И.А., Аносова М.О., Комарова М.М., Хабибуллина Ю.Н., Япаскурт В.О., Козионов А.Е., Волкова М.М. Шеелит золоторудного месторождения Кекура (Западная Чукотка): примесные элементы и флюидные включения // Вестн. Моск. Ун-та. Сер. 4. Геология. 2020. № 1. С. 51–59. https://doi.org/10.3103/S0145875220020052.
- 7. Плотинская О.Ю., Бакшеев И.А., Минервина Е.А. Распределение РЗЭ в шеелите золото-порфирового месторождения Юбилейное (Ю. Урал) по данным LA-ICP-MS // ГРМ. 2018. Т. 60. №4. С. 401–410. https://doi.org/10.1134/S0016777018040020.
- 8. Прибавкин С.В. Новые данные к минералогии сульфидно-кварцевых жил Шарташского карьера // Вестник Уральского отделения РМО. Екатеринбург. Изд-во: ИГГ УрО РАН. 2015. № 12. С. 114–120.
- 9. Прибавкин С.В., Монтеро П., Беа Ф., Ферштатер Г.Б. U-Pb возраст и состав пород Березовского золоторудного поля (Средний Урал). Литосфера. 2013. № 1. С. 136–145.

- Спиридонов Э.М., Бакшеев И.А., Середкин М.В., Куруленко Р.С., Прокофьев В.Ю., Устинов В.И., Прибавкин С.В., Филимонов С.В. Гумбеитовая формация Урала. М. Изд-во: МГУ. 1997. 100 с.
- 11. Спиридонов Э.М., Соколова Н.Ф., Назьмова Г.Н., Шалаев Ю.С. Типохимизм шеелита разноглубинных плутоногенных гидротермальных месторождений золота // ДАН. 1999. Т. 364. № 3. С. 363–365.
- Ферштатер Г.Б., Холоднов В.В., Кременецкий А.А., Краснобаев А.А., Бородина Н.С., Зинькова Е.А., Прибавкин С.В. Золотоносные габбро-тоналит-гранодиорит-гранитные массивы Урала: возраст, геохимия, особенности магматической и рудной эволюции // Геология рудных месторождений. 2010. Т. 52. № 1. С. 65–84. https://doi.org/10.1134/S107570151001006X.
- Chaderi M., Palin J.M., Campbell I.H., Sylvester P.J. Rare Earth Element Systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman Region, Western Australia // Econ. Geol. 1999. V. 94. P. 423–438. DOI:10.2113/gsecongeo.94.3.423.
- Nassau K., Loiacono G.M. Calcium tungstate III: Trivalent rare earth substitution // Journal of Physics and Chemistry of Solids. 1963. V. 24. P. 1503–1510.