Механизм вхождения $Pb^{2+}u Cd^{2+}в$ кристаллическую структуру мурманита, Na,Ti,(Si,O,)O, 2H,O

Паникоровский Т.Л.¹, Калашникова Г.О.², Яковенчук В.Н.^{2,3}, БазайА.В.^{2,3}, Грязнова Д.В.², Кривовичев С.В.²

¹ Лаборатория природоподобных технологий и техносферной безопасности Арктики ФИЦ КНЦ РАН, Апатиты, t.panikorovskii@ksc.ru

² Центр наноматериаловедения ФИЦ КНЦ РАН, Anamumы, bazai@geoksc.apatity.ru; g.kalashnikova@ksc.ru; daryamoskvina@mail.ru; s.krivovichev@ksc.ru

³ Геологический институт КНЦ РАН, Anamumы, yakovenchuk@geoksc.apatity.ru

Аннотация. Исследованы ионообменные и сорбционные свойства мурманита в отношении катионов Pb²⁺ и Cd²⁺. Мурманит способен полностью обменивать катионы Na⁺ на Cd²⁺ и Pb²⁺ в хлоридных растворах при температуре 160 °C. Внедрение свинца в межслоевое пространства мурманита происходит по схеме 2Na⁺ \leftrightarrow Pb²⁺ + \Box . Кадмий входит в кристаллическую структуру мурманита по изоморфной схеме 2Na⁺ \leftrightarrow Cd²⁺ + \Box , замещая натрий в октаэдрических позициях. Упорядочение занятых и вакантных октаэдрических позиций для Cd-рзамещённой формы приводит к изменению элементарной ячейки с исходной пр.гр. *P***1**,*a* = 5.3822(6), *b* = 7.0538(8), *c* = 11.6477(15), *a* = 86.385(9), *β* = 81.967(10), γ = 89.970(9) в диагональную *a* = 8.8154(11), b = 8.8363(11), c = 11.694(4), *a* = 98.786(17), *β* = 90.954(17), γ = 106.039(11).

Ключевые слова: титаносиликат, кристаллическая структура, Cd, Pb, слоистый минерал, ионный обмен, функциональный материал, щелочной массив, Кольский полуостров.

Mechanism of incorporation $Pb^{2+}andCd^{2+}$ into crystal structure of murmanite, Na,Ti,(Si,O,)O,·2H,O

Panikorovskii T.L.¹, Kalashnikova G.O.², Yakovenchuk V.N.^{2,3}, Bazai A.V.^{2,3}, Gryaznova D.V.³, Krivovichev S.V.²

¹Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic Region FRC KSC RAS, Apatity, t.panikorovskii@ksc.ru

² Nanomaterials Research Centre KSC RAS, Apatity, bazai@geoksc.apatity.ru; g.kalashnikova@ksc.ru; daryamoskvina@mail.ru; s.krivovichev@ksc.ru

³ Geological Institute KSC RAS, Apatity, yakovenchuk@geoksc.apatity.ru

Abstract. The ion-exchange and sorption properties of murmanite with respect to Pb²⁺ and Cd²⁺ cations have been studied. Murmanite is able to fully exchange Na+ cations for Cd²⁺ and Pb²⁺ in chloride solutions at 160 °C. Lead incorporation into interlayer space of murmanite occurs according to the isomorphic scheme $2Na^+ \leftrightarrow Pb2^+ + \Box$, replacing sodium in octahedral positions. The ordering of occupied and vacant octahedral positions for the Cd-substituted form leads to a change in the unit cell from the original Sp.gr. $a = 5.3822(6), b = 7.0538(8), c = 11.6477(15), a = 86.385(9), \beta = 81.967(10), \gamma = 89.970(9)$ to diagonal $a = 8.8154(11), b = 8.8363(11), c = 11.694(4), a = 98.786(17), \beta = 90.954(17), \gamma = 106.039(11).$

Keywords: titanosilicate, crystal structure, Cd, Pb, layered crystal, ion exchange, functional material, alkaline massif, Kola Peninsula.

Введение

Систематическое изучение минералогии Хибинского (1327 км²) и Ловозерского (650 км²) щелочных массивов, расположенных на территории Мурманской области, позволило обнаружить и описать656 минералов в Хибинском и 394 в Ловозёрском массивах– около 10 % от известного минерального многообразия (Mandarino, 1989, Пеков, 2001). Изучение уникального разнообразия природных фаз щелочных комплексов, привело к открытию иванюкита, зорита, чиврувайита, лабунцовита, пенквилксита, каменевита, ситинакита, натисита, на основе которых был разработан целый ряд функциональных соединений (ETS-4, IONSIV-911, TAM-5, STS, CST, GTS, SIV, AM-2, STS, AM-4), нашедших свое применение в сорбции, ионном обмене, люминесценции, фотокатализе и оптике и их число продолжает увеличиваться (Chukanov, Pekov, 2005, Yakovenchuk et.al, 2012).

Одной из наиболее важных проблем медно-никелевого производства на филиале предприятия Кольской ГМГ, расположенного в г. Мончегорске, является извлечение микропримесей из сульфатных и хлоридных растворов при выпуске никелевой и кобальтовой продукции. Основными промышленными процессами очистки растворов от примесей тяжелых металлов, в том числе и свинца, являются осаждение, сорбция и экстракция третичными аминами. Несмотря на хорошие показатели выделения свинца и кадмия из таких растворов, некоторая их часть все равно остается в сточных водах производства и требует дальнейшей доочистки сбросных вод. В качестве одного из потенциальных сорбентов может выступать породообразующий минерал мурманит, $Na_2Ti_2(Si_2O_7)O_2 \cdot 2H_2O$. Для которого ранее была показа возможность ионного обмена для халькофильных элементов (Лыкова, 2016).

В настоящей работе рассмотрены результаты ионообменных экспериментовмурманита, с хлоридными растворами кадмия и свинца. В работе обсуждается механизм внедрения катионов Cd²⁺ и Pb²⁺в кристаллическую структур мурманита методамиэлектронно-зондового микроанализа, КР-спектроскопии и рентгеноструктурного анализа.

Эксперимент

В экспериментах по ионному обмену был использован мурманит из пегматитового тела, залегающего в рассланцованных луявритах горы Куамдеспакх Ловозерского массива. Мурманит здесь образует прямоугольные кристаллы (до 10 см в длину), расположенные как в зальбандах прожилков, так и во вмещающих луявритах. В ассоциации с мурманитом, кроме содалита и микроклина присутствуют сферолиты длиннопризматических кристаллов эгирина и крупные (до 1 см в поперечнике) кристаллы эвдиалита. Ионный обмен производился в PFTE автоклаве объемом 200 мл при температуре 160 °C в 1М хлоридном растворе Pb и Cd в течении 12 часов.

Химический состав (табл. 1) был изучен на волнодисперсионном электронно-зондовом микроанализаторе Cameca MS-46 (ГИ КНЦ РАН; напряжение и сила тока 20 кВ и 20-30 нА, диаметр зонда 20 мкм).

Химический состав, (мас. %)				Коэффициент в формуле (на 18 зарядов)			
Оксид	Мурманит исходный	Сd-замещённая форма	Рb-замещённая форма	Элемент	Мурманит исходный	Сd-замещённая форма	Рb-замещённая форма
SiO ₂	30.29	21.73	25.03	Si ⁴⁺	2.16	1.83	2.00
TiO ₂	26.67	24.84	28.77	Ti ⁴⁺	1.43	1.58	1.69
Al ₂ O ₃	0.08	0.10	0.07	A1 ³⁺	0.01	0.01	0.02
FeO	1.68	1.14	1.12	Fe ²⁺	0.10	0.08	0.07
MnO	2.34	2.11	1.49	Mn ²⁺	0.14	0.15	0.09
MgO	0.60	0.32	0.34	Mg ²⁺	0.06	0.04	0.04
CaO	2.66	1.68	2.65	Ca ²⁺	0.20	0.15	0.11
Na ₂ O	9.48		2.22	Na ⁺	1.31		0.25
K ₂ O	0.10		0.16	K^+	0.01		0.01
P ₂ O ₅	0.86	0.91	2.00	P ⁵⁺	0.05	0.07	0.05
SrO	0.72	0.39	0.22	Sr ²⁺	0.03	0.02	0.01
ZrO ₂	2.50	2.19	1.81	Zr^{4+}	0.09	0.09	0.07
Nb ₂ O ₅	3.64	2.99	1.63	Nb ⁵⁺	0.12	0.11	0.06
CdO		27.17		Cd^{2+}		1.07	
Ta ₂ O ₅	0.10	0.26		Ta ⁵⁺		0.01	
PbO			21.56	Pb ²⁺			0.70
Сумма	81.72	85.83	89.07				

Таблица 1. Химический состав изученного мурманита. Table 1. Chemical composition of investigated murmanite.

Спектр комбинационного рассеяния (КР) был получен с помощью спектрометра Horiba Jobin-Yvon LabRamHR 800(ресурсный центр «Геомодель» СПбГУ) с поверхности кристаллов мурманита (при комнатной температуре и длине волны 514 нм).

Рентгеноструктурый анализ проводился на дифрактометре Agilent Technologies XcaliburEOS (ресурсный центр «РДМИ» СПбГУ), оснащенного плоским ССD детектором, при комнатной температуре с использованием монохроматического Мо*К* α излучения ($\lambda = 0.71069$ Å). Параметры элементарной ячейки уточнялись методом наименьших квадратов. Поправка на поглощение определена эмпирически с помощью сферических гармоник, реализованных в алгоритме калибрования SCALEABSPACK, в программном комплексе CrysalysPro (Agilent Technologies, 2014). Уточнение структуры проводилось с помощью программы SHELX (Sheldrick, 2015).

Результаты

Коэффициенты в формуле мурманита были рассчитаны на основе 18 положительных зарядов. Для катион-обменных форм мурманита отмечено практически полное отсутствиеNa, содержание которого в исходном минерале составляет 9.48 мас. % Na₂O или 1.31 коэффициент в формуле (к/ф). Сd-замещённая форма мурманита содержит 27.17 мас. % CdO или 1.07 к/ф, Pb-замещённый мурманит содержит 21.56 мас. % PbO или 0.70 к/ф.

Кристаллическая структура исходного мурманита (рис. 1 а) была уточнена в пространственной группе $P\overline{1}(a=5.3822(6), b=7.0538(8), c=11.6477(15), a=86.385(9), \beta=81.967(10), \gamma=89.970(9))$ до фактора сходимости $R_1 = 0.077$. Модель Рb-обменной формы (рис. 1 б) была уточнена в той же пространственной группе с параметрами ($a=5.2934(6), b=7.1060(7), c=11.293(4), a=86.609(16), \beta=81.667(16), \gamma=89.414(9))$ до $R_1 = 0.19$. Структура Cd-замещённого мурманита (рис. 1 в) была решена в диагональной ячейке ($a=8.8154(11), b=8.8363(11), c=11.694(4), a=98.786(17), \beta=90.954(17), \gamma=106.039(11)$ до $R_1 = 0.16$.

Рис. 1. Кристаллические структуры мурманита: а – исходного, б – Рb-замещённого, в – Cd-замещённого. TiO₆ октаэдры окрашены голубым, SiO₄ тетраэдры – синим, полиэдры Na – жёлтым, Pb – серым и Cd–розовым. Fig. 1. The crystal structures of murmanite: a – initial, б – Pb-exchanged, в – Cd-exchanged. TiO₆ octahedra are blue, SiO₄ tetrahedra are blue, Na polyhedra are yellow, Pb is gray and Cd is pink.

Внедрение катионов Pb^{2+} в кристаллическую структуру мурманита происходит преимущественно в пространство между *НОН* блоков. Внедрение Cd^{2+} происходит в октаэдрические позиции как в *О*-слое, так и в *H*-слое. Структурные данные подтверждают ожидаемые схемы обмена: $2Na^+ \leftrightarrow Pb^{2+} + \Box$, $2Na^+ \leftrightarrow Cd^{2+} + \Box$.

КР-спектры исходного мурманита и его обменных форм показаны на рисунке 2. Полосы 670–720 и 850–880 см⁻¹ относятся к асимметричным валентным колебаниям связей в тетраэдрах SiO_4 , а полосы 910–930 см⁻¹к их симметричным модам. Полосы 400–610 см⁻¹ – отнесены к ассиметричным деформационным колебаниям Si-O связей. Полосы 270–350 см⁻¹ соответствует колебаниям связей Ti-O в октаэдрах. Полосы в диапазоне 100–200 см⁻¹ отнесены к колебаниям решётки. Сле-

Fig. 2. Raman spectra of murmanite: initial, Pb-exchanged, Cd-exchanged.

дует отметить, что наиболее сильная разница между спектрами наблюдается для полос в диапазоне 250–370 см⁻¹ и вероятнее всего связана с различным окружением крупных катионов.

Исследования проводились в рамках научных тем ФИЦ КНЦ РАН 122022400093-9 (эксперименты по сорбции) и 122022400362-6 (исследование состава) при финансовой поддержке гранта РНФ 21-77-10103 (изучение кристаллических структур).

Литература

- 1. Mandarino J.A. and Anderson V. Monteregian Treasures: The Minerals of Mont Saint Hilaire, Quebec. Cambridge University Press. New York. 1989. 281 p.
- 2. Пеков И.В., Турчкова А.Г., Хорват Л. Цеолиты щелочного массива Сент-Илер: натриевая специфика и ее генетическое значение // Традиционные и новые направления в минералогических исследованиях: годичная сессия МО ВМО. 2001. С. 117-119.
- Chukanov N.V., Pekov I.V. Heterosilicates with tetrahedral-octahedral frameworks: mineralogical and crystalchemical aspects // Rev. Mineral Geochem. 2005. V. 57. P. 105–143.
- Yakovenchuk V.N., Selivanova E.A., Krivovichev S.V., Pakhomovsky Ya.A., Spiridonova D.V., Kasikov A.G., IvanyukG.Yu. Ivanyukite-group minerals: crystal structure and cation-exchange properties // Minerals as Advanced Materials II (Ed. S.V.Krivovichev). Springer-Verlag, Berlin-Heidelberg, 2012. P. 205–211.
- Лыкова И.С. Минералы группы эпистолита: посткристаллизационные преобразования и их кристаллохимические механизм: природные системы и модельные эксперименты. Канд. дисс. МГУ. Москва. 2016. 235 с.
- 6. Agilent Technologies CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK
- 7. Sheldrick, G.M. 2015. SHELXT Integrated space-group and crystal-structure determination // Acta Cryst. A. 71. P. 3–8.