Гальгенбергит-(Ce) из щелочных пород Кондёрского массива (Хабаровский край)

Осипов A.C. ¹, Антонов A.A. ²

- 1 Санкт-Петербургский государственный университет, Санкт-Петербург, osipov.anst@yandex.ru
- 2 Всероссийский научно-исследовательский геологический институт им. А.П. Карпинского, Санкт-Петербург, anthonov@yandex.ru

Аннотация. В работе представлена характеристика гальгенбергита-(Ce) $CaCe_2(CO_3)_4$: H_2O , обнаруженного в составе щелочных эвдиалит-эгирин-альбитовых пород Кондёрского массива (Хабаровский край). Минерал ассоциирует с эвдиалитом, эгирином, альбитом, сепиолитом и кальцитом. Гальгнебергит-(Ce) формирует оторочки в краевой части индивидов альбита мощностью до 50 мкм. Кристаллы бесцветные, полупрозрачные. Химическая формула в пересчете на 3 единицы катионов имеет вид: $(Ca_{0.94}Sr_{0.06})_{1.00}$ $(Ce_{1.05}Nd_{0.52}La_{0.22}Pr_{0.12}Sm_{0.07}Gd_{0.01}Y_{0.01})_{2.00}(CO_3)_{4.00} \cdot H_2O$. Минерал близок по химическому составу к образцу гальгенбергита-(Ce) из типового минералопроявления — туннеля Гальгнеберг в Австрии. Сделано предположение о кристаллизации карбоната в процессе разрушения гидратированного карбонатсодержащего аналога манганоэвдиалита под воздействием низкотемпературных гидротермальных растворов.

Ключевые слова: гальгенбергит-(Се), редкоземельные минералы, щелочные породы, Кондёрский массив, низкотемпературные гидротермальные преобразования.

Galgenbergite - (Ce) from alkaline rocks of the Konder massif (Khabarovsk Krai)

Osipov A.S. 1, Antonov A.A. 2

- ¹ Saint Petersburg State University, Saint Petersburg, osipov.anst@yandex.ru
- ² All-Russian Research Geological Institute named after V.I. A.P. Karpinsky, St. Petersburg, anthonov@yandex.ru

Abstract. This paper presents the characteristics of galgenbergite-(Ce) $CaCe_2(CO_3)_4$ · H_2O , from the alkaline eudialyte-aegirine-albite rocks of the Konder massif (Khabarovsk Kray). The mineral is associated with eudialyte, aegirine, albite, sepiolite, and calcite. Galgenbergite-(Ce) forms rims in the boundary parts of the albite crystals with a thickness up to 50 μm. The crystals are colorless, translucent. The chemical composition based on 3 units of cations is: $(Ca_{0.94}Sr_{0.06})_{1.00}(Ce_{1.05}Nd_{0.52}La_{0.22}Pr_{0.12}Sm_{0.07}Gd_{0.01}Y_{0.01})_{2.00}(CO_3)_{4.00} \cdot H_2O$. The mineral is similar in its chemical composition to the sample of galgenbergite-(Ce) from the type locality - Galgneberg tunnel, Austria. An assumption about the crystallization of galgenbergite-(Ce) in the process of the hydrated carbonate-containing analog of manganoeudialyte destruction under the influence of low-temperature hydrothermal solutions was made.

Key words: galgenbergite-(Ce), REE-mineralization, alkaline rocks, Konder massif, low temperature hydrothermal transformations.

Введение

Редкий карбонат кальция и церия - гальгенбергит-(Ce) $CaCe_2(CO_3)_4$: H_2O был впервые обнаружен в 1998 году в Австрии (провинция Штирия) при проходке железнодорожного туннеля Гальгенберг (Hollerer, 1998). Минерал был встречен в небольших полостях в метаморфизованных альбит-хлоритовых сланцах в ассоциации с сидеритом, анкилитом-(Ce), пиритом и кальцитом.

Кроме того, гальгенбергит-(Се) был обнаружен в Швеции (провинция Даларна) в гранитах І-типа массива Сёрвик (Lindh, 2012), в Парагвае (провинция Альто-Парагвай, щелочной комплекс Серро Боггиани) в составе нефелинового сиенита (Comin-Chiaramonti et al., 2016) и в Австралии (провинция Элерон) на месторождении Ноланс-Бор в составе фторапатитовых жильных тел, секущих вмещающие гранитогнейсы (Huston et al., 2016). На территории России гальгенбергит-(Се) обнаружен на Кольском полуострове (северо-западный фланг Лицко-Арагубского комплекса) в пег-

матоидных гранитах REE-Th-U – проявления Дикое (Kaulina et al., 2018) и на Южном Урале в составе сульфидных руд Талганского Cu-Zn месторождения (Ayupova et. al., 2019).

Нами гальгенбергит-(Ce) был обнаружен в составе щелочных эвдиалит-эгирин-альбитовых пород Кондёрского массива (Хабаровский край). Это седьмая находка данного минерала в природе и третья на территории России. Данная работа посвящена минералогической характеристике кондёрского гальгенбергита-(Ce).

Геологическая позиция

Кондёрский щелочно-ультраосновный массив находится в 800 км к северу от Хабаровска в междуречье р. Омня и р. Маймакан – левых притоков р. Мая. Массив известен, прежде всего, как одно из крупнейших россыпных месторождений платины.

Комплекс расположен в восточной части Алданского щита. На уровне современного эрозионного среза структура имеет в плане форму кольца диаметром до 8.5 км. Вмещающие породы представлены нижнеархейскими сканированными мраморами, кристаллическими сланцами и кварцитами, а также среднерифейскими терригенными породами (аргиллитами, алевролитами и песчаниками).

Интрузивные образования Кондёрского массива представлены двумя группами пород различного состава и возраста. Большую часть площади массива слагают раннепротерозойские мафитультрамафитовые породы. К ним относятся дуниты, формирующие шток в центральной части интрузии, клинопироксениты, образующие кольцевую оторочку мощностью 50-750 метров вокруг дунитового ядра, а также габбро и косьвиты представленные крупными дуговыми телами на периферии массива и многочисленными разноориентированными дайками в дунитах и клинопироксенитах. Менее распространены в пределах комплекса породы щелочной серии и их пегматиты. Они формируют маломощные жильные тела, секущие раннепротерозойские дуниты и клинопироксениты. Нами были отобраны образцы пегматитов нефелин-сиенитового, сиенитового и ийолитуртитового состава, а также вишневитовых и эвдиалит-эгирин-альбитовых пород. В последних был диагностирован гальгенбергит-(Се).

Материалы и методы исследования

Образцы для исследования были отобраны в 2013 г. в северной эндоконтактовой части Кондёрского массива из жилы щелочных эвдиалит-эгирин-альбитовых пород. Жила имеет субширотное простирание, видимую протяженность 7-9 метров, мощность — 3-5 метров. Вмещающие породы представлены пироксенитами.

Исследования выполнялись в аншлифах на оборудовании ресурсного центра СПбГУ «Геомодель». Изучение морфологии и химического состава проводились с использованием сканирующего электронного микроскопа Hitachi S-3400N с приставкой Oxford Instruments X-Max 20 и детектором Oxford Instruments Nordlys-HKLEBSD. Условия ЭДС-анализа: ускоряющее напряжение 20 кв, ток 1.7 нА, рабочее расстояние 10 мм. Аналитики — Власенко Н.С., Шиловских В.В.

Результаты исследования и их обсуждение

Минеральная ассоциация. Основной объем эвдиалит-эгирин-альбитовых пород слагают два главных минерала — эгирин и альбит, формирующие плотную мелкокристаллическую матрицу. В ней наблюдаются второстепенные лампрофиллит, баритолампрофиллит, микроклин и гидратированный карбонатсодержащий аналог манганоэвдиалита (Осипов и др., 2017). В составе пород диагностирован 21 акцессорный минерал (Осипов и др., 2021), большая часть из которых пространственно связана с индивидами эвдиалита, и вероятно, является продуктом химического разложения кольцевого цирконосиликата.

Одним из таких минералов является гальгенбергит-(Ce), встреченный в центральной части реликтового зерна эвдиалита (рис. $1\ a$). Вмещающая минерал матрица выполнена массивным сепиолитом, в котором наблюдаются кристаллы эгирина и альбита, а также кальцит. Последний выполняет каверны и микротрещины в породе, формирует оторочки вокруг индивидов силикатов, а в некоторых случаях полностью замещает альбит.

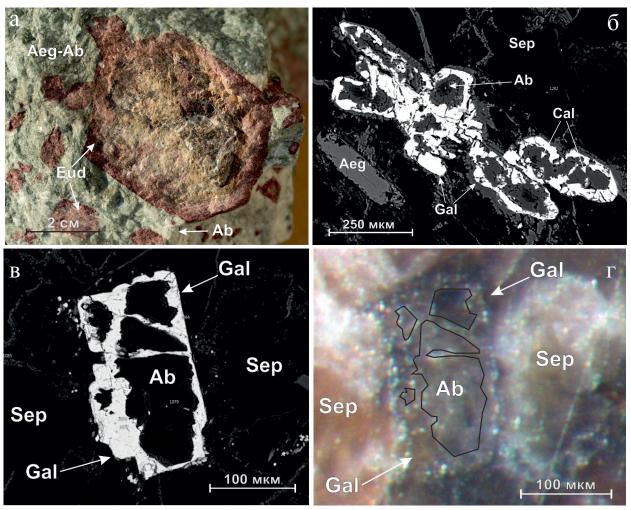


Рис. 1. Содержащие гальгенбергит-(Се) эвдиалит-эгирин-альбитовые породы Кондёрского массива. Фотографии: а – образца, б, в – аншлифов в обратно-отражённых электронах, г – аншлифа в бинокуляре. а – общий вид породы. Крупный кристалл эвдиалита с корродированной центральной частью (Eud) в эгиринальбитовой (Aeg-Ab) матрице. б – группа зерен альбита (Ab), частично замещенных гальгенбергитом-(Се) (Gal) (оторочки) и кальцитом (Cal) (центральная часть) в массе сепиолита (Sep). Наблюдается эгирин (Aeg). г, в – кристалл альбита (Ab) с оторочкой гальгенбергита-(Се) (Gal) в массе сепиолита (Sep) в обратнорассеянных электронах (в) и оптике (г).

Fig. 1. Galgenbergite-(Ce)-containing eudialyte – aegirine – albite rocks of the Konder massif. Pictures of: a – rock sample, b, c – polished sections in back-scattered electrons, d – polished sections in optics.

a – a general view of the rock. A large eudialyte crystal with a corroded central part (Eud) in the aegirine-albite (Aeg-Ab) matrix. b – albite (Ab) grains group partially replaced by galgenbergite-(Ce) (in the edges) and calcite (Cal) (in the central part) in the sepiolite (Sep) mass. Aegirine (Aeg) is also observed. c, d – an albite (Ab) crystal with a galgenbergite-(Ce) (Gal) rim in the sepiolite (Sep) mass in backscattered electrons (b) and optics (d).

Морфология. Гальгенбергит-(Ce) образует ксеноморфные выделения, как правило формируя оторочки в краевой части зерен альбита (рис. 1 \mathfrak{s} , \mathfrak{e}). При этом сохраняется первичная морфология кристаллов плагиоклаза. Размеры оторочек варьирует от 10 до 50 мкм по ширине и до 200 мкм по удлинению. В некоторых случаях в формировании псевдоморфоз по альбиту участвует также кальцит, реликты силиката при этом наблюдаются лишь в центральной части таких агрегатов (рис. 1 \mathfrak{o}). При этом замещение альбита кальцитом, судя по всему, происходит несколько позднее кристаллизации гальнебергита-(Ce). В единичных случаях гальгенбергит-(Ce) также выполняет мелкие (до 5-10 мкм) каверны в массе сепиолита на границе с кристаллами альбита и эгирина. В аншлифе гальгенбергит-(Ce) прозрачный, практически бесцветный.

Таблица 1. Химический состав (масс.%) и коэффициенты в химической формуле гальгенбергита-(Се). Table 1. Chemical composition (wt.%) and formula coefficients of galgenbergite-(Се).

II	Теор. состав	Место отбора											
Компонент			туннель Гальгенберг (Австрия) ² n=6			массив Серро Богги- ани (Парагвай) ³ n=2							
		n=5											
		1	2	3	4	5	\bar{X}	\bar{X}	Min	Max	1	2	\bar{X}
Al ₂ O ₃		-	_		•				1,111	112412	0.48	1.20	0.84
Y_2O_3						1.11	0.22				0.05	0.01	0.03
La ₂ O ₃		6.06	5.54	5.57	6.28	4.67	5.62	11.70	11.07	12.36		26.88	25.85
Ce_2O_3	56.74	28.53	28.76	25.40	26.62	24.13	26.69	28.95	28.46	29.54		23.86	23.20
Pr ₂ O ₃		2.77	2.88	3.10	3.38	3.07	3.04	3.48	3.12	3.76	1.19	1.17	1.18
Nd ₂ O ₂		12.41	12.11	14.21	14.25	15.01	13.60	11.86	11.04	12.73		2.88	2.97
Sm_2O_3		1.36	1.50	1.90	1.88	2.31	1.79				0.37	0.27	0.32
Gd,O,			0.74				0.15						
ThÔ2											0.10	0.45	0.28
UO2											0.06	0.02	0.04
Fe ₂ O ₃											0.67	0.93	0.80
MnO											0.07		0.04
SrO		0.84	0.67	0.81	1.30	0.93	0.91				6.75	2.44	4.60
CaO	9.7	8.45	7.76	8.33	7.56	8.59	8.14	9.49	8.86	10.20	6.10	6.28	6.19
Na ₂ O											0.22	0.69	0.46
K,Õ												0.05	0.03
F											0.93	0.92	0.93
Cl												0.01	0.01
-O=F.Cl											0.39	0.39	0.39
CO ₂ calc*	30.44	27.40	26.92	26.88	27.39	27.37	27.19	30.00			28.96	30.07	29.52
H ₂ O calc*	3.12	2.83	2.80	2.78	2.86	2.81	2.81	3.07			3.07	3.13	3.10
Total	100.00	90.65	89.68	88.98	91.51	90.00	90.16	98.55			99.42	101.26	100.34
Коэффициенты в кристаллохимической формуле, рассчитанные на 3 единицы суммы катионов													
Al											0.05	0.13	0.09
Y						0.06	0.01				< 0.01	< 0.01	< 0.01
La		0.24	0.22	0.22	0.25	0.18	0.22	0.42			0.88	0.93	0.91
Ce	2.00	1.11	1.15	1.01	1.05	0.94	1.05	1.04			0.80	0.82	0.81
Pr		0.11	0.11	0.12	0.13	0.12	0.12	0.12			0.04	0.04	0.04
Nd		0.47	0.47	0.55	0.55	0.57	0.52	0.42			0.10	0.10	0.10
Sm		0.05	0.06	0.07	0.07	0.08	0.07				0.01	0.01	0.01
Gd			0.03				0.01						
Th											0.00	0.01	0.01
U											< 0.01	<0.01	< 0.01
Fe											0.05	0.07	0.06
Mn											0.01		< 0.01
Sr	1.00	0.05	0.04	0.05	0.08	0.06	0.06	1.00			0.38	0.13	0.25
Ca	1.00	0.97	0.91	0.97	0.87	0.98	0.94	1.00			0.63	0.63	0.63
Na								-			0.04	0.13	0.08
K								-			0.20	0.01	<0.01
F								-			0.28	0.27	0.28
Cl	4.00	2.00	4.02	2.00	4.02	2.00	4.00	4.00			2.01	<0.01	<0.01
С	4.00	3.99	4.02	3.99	4.02	3.98	4.00	4.00			3.81	3.85	3.83
0	12.00	11.97	12.07	11.97	12.07	11.94	12.01	12.00			11.44	11.56	11.50

Примечания к таблице: 1 – наши данные (1, 2, 3, 4, 5 – исходные анализы), 2 – данные Walter et al, 2013; 3 – данные *Comin-Chiaramonti* et al, 2016; пустые ячейки – содержания элемента ниже порога обнаружения; n – число анализов для каждого источника; $\overline{X}\overline{X}$, Min, Max – среднее, минимальное и максимальное значение для группы анализов.

Химический состав. Химический состав гальгенбергита-(Се) достаточно постоянен (табл. 1). Содержания главных элементов варьируют в следующих пределах (масс. %): CaO 7.56-8.59 (в среднем 8.14), Ce₂O₃ 24.13-28.53 (в среднем 26.69). Основные примесные компоненты (масс. %)

 $-\ \mathrm{Nd_2O_3}\ 12.11-15.01$ (в среднем 13.60), La_2O_3 4.67-6.28 (в среднем 5.62), Pr_2O_3 2.77-3.38 (в среднем 3.04), Sm_2O_3 1.36-2.31 (в среднем 1.79), SrO 0.67-1.30 (в среднем 0.91). В единичных случая отмечены $\mathrm{Y_2O_3}$ – до 1.11 масс. % и $\mathrm{Gd_2O_3}$ – до 0.74 масс. %. Расчётные содержания углерода и воды составляют (масс. %): $\mathrm{CO_2}\ _{\mathrm{calc}^*}\ 26.88-27.40$ (в среднем 27.19), $\mathrm{H_2O}\ _{\mathrm{calc}^*}\ 2.78-2.86$ (в среднем 2.81). Расчетное соотношение $\sum (REE+Y)/\sum (Ca+Ba)$, позволившее диагностировать минерал именно как гальгнебергит-(Ce), всегда близко или равняется 2. Рассчитанная по средним содержаниям элементов на 3 единицы катионов эмпирическая формула минерала имеет вид: $(\mathrm{Ca_{0.94}Sr_{0.06}})_{1.00}(\mathrm{Ce_{1.05}Nd_{0.52}La_{0.22}Pr_{0.12}Sm_{0.07}\mathrm{Gd_{0.01}Y_{0.01}})_{2.00}(\mathrm{CO_3})_{4.00} \cdot \mathrm{H_2O}$. Полученные данные хорошо согласуются по стехиометрии с теоретической формулой гальгенбергита-(Ce).

Полученные нами данные близки к теоретическому составу, а также составу минерала из Австрии. Основное отличие заключается в незначительной примеси стронция в составе образца из массива Кондёр. В то же время, составы гальгнебрегита-(Ce) из Парагвая отличаются существенной примесью стронция — до 0.38 формульных коэффициентов.

По содержанию РЗЭ исследуемый минерал схож с образцом из туннеля Гальгенберг. Основное их отличие заключается в соотношении Nd/La, которое выше в образце из Кондёрского массива (2.34 против 1), а также незначительной примеси самария, гадолиния и иттрия, присутствующей в нем. При этом образец из Серро Боггиани отличается принципиально иным соотношением REE — содержание лантана несколько выше содержания церия, остальные элементы присутствуют в незначительном количестве. Это дает формальный повод отнести данный минерал к La-доминантной разновидности гальгенбергита-(Ce). В то же время, состав полученный авторами (Comin-Chiaramonti et al., 2016) отличается большим количеством других примесей, таких как Al, Th, U, Fe, Mn, Na, K, а также F и Cl, что может свидетельствовать о некоторой ошибке анализа. Данное предположение объясняет заниженные содержания углерода в расчетной формуле минерала — 3.83 ф.к.

Заключение

Кондёрский массив – седьмое известное проявление гальгенбергита-(Се) в мире и третье – на территории России. При этом различные находки минерала сделаны в контрастных по минералого-петрографическим характеристикам объектах, что свидетельствует об отсутствии приуроченности минерала к какому-либо определённому типу материнских горных пород. Обнаруженный нами карбонат по химическому составу близок к образцу из типового проявления – туннеля Гальгенберг (Австрия).

Морфология и минеральная ассоциация гальгенбергита-(Се) указывают на его принадлежность к поздним этапам формирования пород. Это подтверждает выводы, полученные в предшествующих нашему исследованиях (Hollerer, 1998; Lindh, 2012; Comin-Chiaramonti et al., 2016; Kaulina et al., 2018). При этом источником вещества для формирования исследуемого карбоната, вероятно, послужило разрушение гидратированного карбонатсодержащего аналога манганоэвдиалита под воздействием низкотемпературных гидротермальных растворов.

Благодарности

Авторы выражают благодарность сотрудникам кафедры минералогии СПбГУ, в частности профессору А.И. Брусницыну за ценные рекомендации и комментарии к данной работе, а также сотрудникам РЦ СПбГУ «Геомодель» Н.С. Власенко и В.В. Шиловских за помощь в анализе химических составов минералов.

Работа выполнена при поддержке гранта РФФИ №19-35-90067. Исследования выполнены с использованием аналитических возможностей ресурсных центров Санкт-Петербургского государственного университета «Геомодель», «Рентгенодифракционные методы исследования».

Литература

1. Булах А.Г., Золотарёв А.А., Кривовичев В.Г. Структура, изоморфизм, формулы, классификация минералов СПб. Изд-во: С.-Петерб. ун-та. 2014. 133 с.

- 2. Гурович В.Г., Емельяненко Е.П., Землянухин В.Н., Каретников А.С., Квасов А.И., Лазаренков В.Г., Малич К.Н., Мочалов А.Г., Приходько В.С., Степашко А.А. Геология, петрология и рудоносность Кондерского массива. М. Изд-во: Наука. 1994. 176 с.
- 3. Осипов А.С., Антонов А.А., Паникоровский Т.Л., Золотарёв-мл. А.А. Гидратированный карбонатсодержащий аналог манганоэвдиалита из щелочных пород Кондёрского массива,Хабаровский край // Записки РМО. 2017. Т. 146. №. 4. С. 78–93.
- 4. Петрология и платиноносность кольцевых щелочно-ультраосновных комплексов. Ред. И.Я. Некрасов и Н.П. Лаверов. М. Изд-во: Наука. 1994. 381 с.
- 5. Осипов А.С., Антонов А.А., Бочаров В.Н., Власенко Н.С. Стронадельфит из щелочных пород Кондёрского массива (Хабаровский край) // Записки РМО. 2021. Т. 152. №. 2.
- Ayupova N.R., Maslennikov V.V., Filippova K.A. REE Geochemistry and Mineralogy in Ores of the Talgan Cu–Zn Massive Sulfide Deposit, Southern Urals // Doklady Earth Sciences. 2019. V. 487/2. P. 973–975. DOI:10.1134/S1028334X19080233.
- 7. Comin-Chiaramonti P., Renzulli A., Ridolfi F., Gaston E.R. Enrich G. E.R., Gomes C.B., De Min A., Azzone R.G., Ruberti E. Late-stage magmatic to deuteric/metasomatic accessory minerals from the Cerro Boggiani agpaitic complex (Alto Paraguay Alkaline Province) // Journal of South American Earth Sciences. 2016. V. 71. P. 248–261. DOI:10.1016/j.jsames.2016.08.003.
- 8. Hollerer, C.E. Ca(REE)₂(CO₃)₄·H₂O, a new mineral from Steiermark, Austria // Mitteilungen der Österreichschen Mineralogischen Gesellschaft. 1998. V. 143. P. 200–201.
- 9. Huston D.L., Maas R., Cross A.J., Hussey K.J., Mernagh T.P., Fraser G., Champion D.C. The Nolans Bore rare-earth element-phosphorus-uranium mineral system: geology, origin and post-depositional modifications // Miner Deposita. 2016. V. 51. P. 797–822. DOI:10.1007/s00126-015-0631-y.
- 10. Kaulina T.V., Kalinin A.A., Il'chenko V.L., Gannibal M.A., Avedisyan A.A., Elizarov D.V., Nerovich L.I., Nitkina E.A. Age and Formation Conditions of U Mineralization in the Litsa Area and the Salla-Kuolajarvi Zone (Kola Region, Russia) // Minerals. 2018. V. 563. N. 8. DOI:10.3390/min8120563.
- 11. Lindh A., Minute-sized crystals of HFSE minerals in evolved, fluorite-bearing granite, an example from the Sorvik granite, central Sweden // A Scandinavian Journal of Earth Sciences. 2012. V. 134. P. 283–294. DOI:10.1080/11035897.2012.755707.
- Osipov A.S., Antonov A.A., Panikorovskii T.L., Zolotarevjr A.A. Hydrated CO₃-Bearing Analog of Manganoeudialyte from Alkali Pegmatites of the Konder Pluton, Khabarovsk Krai. Zapiski RMO. 2017.
 V. 126. N. 4. P. 78–93 (in Russian, English translation: Geol. Ore Deposits. 2018. V. 60. N.8. P. 1–10). DOI:10.1134/S1075701518080056.
- 13. Walter F., Bojar H.-P., Hollerer C.E., Mereiter K. The crystal structure of galgenbergite-(Ce), CaCe₂(CO₃)₄·H₂O // Miner. Petrol. 2013. V. 107. P. 189–199. DOI:10.1007/s00710-012-0246-2.