Минералогия циркона и U-Pb возраст метаморфических процессов в гнейсах ТТГ Ингозерского массива (Кольский регион): данные U-Pb SHRIMP датирования

Ниткина Е.А.¹, Баянова Т.Б.¹, Лялина Л.М.¹, Ларионов А.Н.²

¹ Геологический институт КНЦ РАН, Anamumы, nitkina@geoksc.apatity.ru, bayanova@geoksc.apatity.ru, lyalina@geoksc.apatity.ru

² ВСЕГЕИ, С.-Петербург, alexander_larionov@vsegei.sp.ru

Аннотация. В кристаллах циркона из гнейсов Ингозерского массива установлена фазовая неоднородность, отвечающая процессам метаморфизма, проявленным в гнейсах комплекса ТТГ, а также Th/U отношения, соответствующие таковым для метаморфических цирконов гнейсов. По результатам изотопного U-Pb датирования методом SHRIMP-II (ВСЕГЕИ) получен возраст метаморфизма для амфибол-биотитового гнейса (H-10-07) 2764 ± 10 млн. лет и для биотит-амфиболовом гнейсе (H-10-08) 2739 ± 12 млн. лет.

Ключевые слова: Изотопное U-Pb датирование, ТТГ комплексы, минералогия циркона.

Mineralogy of zircon and U-Pb age of metamorphic processes in TTG gneisses of the Ingozero massif complex (Kola region): U-Pb SHRIMP dating

Nitkina E.A.¹, Bayanova T.B.¹, Lyalina L.M.¹, Larionov A.N.²

¹ GI KSC RAS, Apatity, nitkina@geoksc.apatity.ru, bayanova@geoksc.apatity.ru, lyalina@geoksc.apatity.ru ² VSEGEI, S.-Petersburg, alexander larionov@vsegei.sp.ru

Abstract. In zircon crystals from the gneisses of the Ingozero massif, a phase inhomogeneity corresponding to the processes of metamorphism manifested in the gneisses of the TTG complex, as well as the Th / U ratios corresponding to those of the metamorphic zircons of the gneisses, was established. According to the results of isotopic U-Pb dating by the SHRIMP-II method (VSEGEI), the age of metamorphism for amphibole-biotite gneiss (H-10-07) is 2764 ± 10 Ma and for biotite-amphibole gneiss (H-10-08) – 2739 ± 12 million years.

Key words: U-Pb isotope dating, TTG complexes, zircon mineralogy.

Введение

Ингозерский массив расположен в северной части Беломорского подвижного пояса на СВ Балтийского щита (рис. 1) и представляет собой комплекс тоналит-трондьемит-гранодиоритов (ТТГ) (Объяснительная записка..., 1994; Vetrin et al., 2018). В пределах Ингозерского массива выделены биотитовые, биотит-амфиболовые, амфибол-биотитовые гнейсы, гранитогнейсы, амфиболиты, гранодиориты и пегматиты. Гнейсы являются метаморфизованными и рассланцованными останцами первичных ТТГ пород (Козлов и др., 2006). Для гнейсов Ингозерского массива (Ниткина, Баянова, 2018) точки химических анализов гнейсов ложатся в поля тоналитов и трондьемитов, высокое содержание легких редкоземельных элементов и отсутствие Еu аномалии говорит о происхождение пород из обогащенных источников без существенной роли фракционной.

Последовательность и время проявления эндогенных процессов Ингозерского массива (Козлов и др., 2006) включает следующие этапы: формирование исходных пород для гнейсов – 3149 ± 49 млн. лет (Вауапоva et al., 2016); внедрение даек основных пород; второй этап внедрения тоналитов или метаморфизм и деформации пород, связанные с внедрением даек основных пород – $2727\pm5-2725\pm2$ млн. лет; деформация и рассланцевание пород, происходившие одновременно с внедрением гранитоидных тел – $2697\pm9-2667\pm7$ млн. лет; внедрение гранитных тел и микроклинизация биотитовых гнейсов – 2615 ± 8 млн. лет (Ниткина, Баянова, 2018); образование тел пегматита и послойная микрокоинизация – 2549 ± 30 млн. лет; образование пегматитовых и гранитных жил – 1644 ± 7 (Ниткина, Баянова, 2018) и образование кварцевых жил. Пробы на минералогические и изотопные U-Pb исследования циркона (методом SHRIMP-II) отобраны из амфибол-биотитовых

Рис. 1. Схематическая карта Кольского полуострова (Балаганский, 2002).

Fig. 1. Geological map of the Kola Peninsula (Balaganskiy, 2002). гнейсов (H-10-07) и из биотит-амфиболовых гнейсов (H-0-08).

Минералогия циркона

В амфибол-биотитовом гнейсе (Н-10-07) в мономинеральных фракциях циркона были выделены пять типов кристаллов циркона (рис. 2а). Первый – полупрозрачные темно-коричневого цвета кристаллы гиацинтово-цирконового типа со средним размером - 0.245 × 0.110 мм, коэффициент удлинения (Ку)-2.2. На катодолюминесцентных (CL) изображениях и изображениях в обратно-отраженных электронах (BSE) выявлена внутрифазовая неоднородность (зональность). Второй представлен полупрозрачными призматическими и короткопризматическими кристаллами светло-коричневого цвета гиацинтовоцирконового типа ({100}+{110}+{111}), средние размеры - 0.140 × 0.07 мм, Ку-2. В ВSE и CL выявлена внутрифазовая неоднородность (зональность и секториальность). Третий характеризуется на-

личием темно-коричневых полупрозрачных длиннопризматических кристаллов цирконового типа. Средние размеры – 0.420×0.105 мм, Ку-4. В ВSE и CL выявлена внутрифазовая неоднородность (ядра). Четвёртый представлен темно-коричневыми полупрозрачными изометричными кристаллами со сглаженными гранями со средними размерами – 0.140×0.140 мм, Ку-1. В ВSE и CL выявлена внутрифазовая неоднородность (зональность). Пятый включает темно-коричневые длиннопризматические кристаллы гиацинтового типа, средние размеры – 0.245×0.09 мм, Ку-2.7. В ВSE и CL выявлена внутрифазовая неоднородность (зональность).

В биотит-амфиболовом гнейсе (H-10-08) в мономинеральных фракциях циркона были выделены следующие типы кристаллов циркона (рис. 2 б). Первый объединил темно-коричневые призматические кристаллы гиацинтово-цирконового типа со средними размерами – 0.245×0.110 мм, Ky-2.2. В ВSE и CL выявлена внутрифазовая неоднородность (зональностью, ядра). Второй представлен темно-коричневыми полупрозрачными длиннопризматическими кристаллами игольчатого типа ({110}+{311}), средние размеры – 0.315×0.105 мм, Ky-3. В ВSE и CL внутрифазовая неоднородность выявлена слабо и представлена разным свечением участков кристалла. Третий характеризуется наличием темно-коричневых полупрозрачных длиннопризматических кристаллов гиацинтовогипа, средние размеры – 0.460×0.12 мм, Ky-3.8. В ВSE и CL выявлена внутрифазовая неоднородность (зональность, секториальность). Четвёртый объединил бледно-розовые прозрачные призматические кристаллы гиацинтово-цирконового типа со средними размерами – 0.200×0.100 мм, Ky-2. В ВSE и CL выявлена внутрифазовая неоднородность (зональность, секториальность). Четвёртый объединил бледно-розовые прозрачные призматические кристаллы гиацинтово-цирконового типа со средними размерами – 0.200×0.100 мм, Ky-2. В ВSE и CL выявлена внутрифазовая неоднородность, которая представлена тонкой ритмичной зональностью, повторяющей контуры кристалла.

Геохронологическое U-Pb датирование циркона

Изотопные исследования проводилось методом SHRIMP II (чувствительный высокоразрешающий ионный микрозонд второго поколения) в ЦИИ ФГУП «ВСЕГЕИ».

В амфибол-биотитовом гнейсе (H-10-07) для датирования выбраны (рис. 3a): длинопризматические кристаллы циркона – точки проведения анализа N-10-07_1.1, N-10-07_2.1 и N-10-07_2_1re; изометричные кристаллы циркона – точки проведения анализа N-10-07_3, N-10-07_3.1 ге и N-10-07_4. На U-Pb диаграмме по фигуративной точке 1 получен конкордантный возраст 2764±10 млн. лет, CKBO=1.4 (рис. 4 а, табл. 1). Остальные фигуративные точки дают разброс данных по возрастам от 2650 млн. лет до 2870 млн. лет (рис. 4 а; 5; табл. 1). Th/U отношения составляют 0.32-0.92 (рис. 6, табл. 1).

Рис. 2. Фотографии выделенных морфологических типов кристаллов циркона в: а – амфибол-биотитовом гнейсе (H-10-07); б – биотит-амфиболовом гнейсе (H-10-08).

Fig. 2. Zircon photo of: a – Amp-Bt gneisses (H-10-07), b – Bt-Amp gneisses (H-10-08).

В биотит-амфиболовом гнейсе (H-10-08) для датирования выбраны (рис. 3 б): длинопризматические кристаллы циркона – точки проведения анализа N-10-08_1.1, N-10-08_5.1, N-10-08_1.1re; изометричные кристаллы циркона – точки проведения анализа N-10-08_3.1, N-10-08_4.1re, N-10-08_4.1, N-10-08_3.2. На U-Pb диаграмме по 3 фигуративным точкам 1, 2 и 3 построена изохрона с верхним пересечением с конкордией 2739 ± 12 млн. лет, CKBO=1.1 (рис. 4 б, табл. 1). Остальные фигуративные точки дают разброс данных по возрастам от 2600 млн. лет до 3070 млн. лет (рис. 4 б; 5; табл. 1). Th/U отношения составляют от 0.06 до 0.65 (рис. 6, табл. 1).

Выводы

Для циркона из гнейсов Ингозерского массива установлена фазовая неоднородность, отвечающая процессам кристаллизации и метаморфизма, проявленным в гнейсах комплекса ТТГ, а также Th/U отношения, характерные для метаморфических цирконов гнейсов (Пыстин, Пыстина, 2018). По результатам изотопного U-Pb датирования методом SHRIMP-II подтверждён возраст проявления метаморфических процессов в гнейсах Ингозерского массива, полученный раннее (Ниткина&Баянова, 2018): для амфибол-биотитового гнейса (H-10-07) 2764 ± 10 млн. лет, для биотит-амфиболовом гнейсе (H-10-08) 2739±12 млн. лет.

Точки	% ²⁰⁶ Pb _c	ppm U	ppm Th	ppm ²⁰⁶ Pb*	$\frac{^{232}}{^{238}} \overline{U}$	$\frac{206}{238} \frac{\text{Pb}}{\text{U}}$ Age	200 200 A	² <u>Pb</u> ⁵ Pb .ge	Di co da	s- r- nt	$\frac{207}{235}$ <u>Pb</u> *	±%	$\frac{206}{238} \frac{Pb}{U}^{*}$	±%	err corr
Биотит-амфиболовый гнейс (Н-10-08)															
N-10-08_4.1	0.35	89	12	40.2	0.14	2723	±12	2750	±26	+1	13.84	1.7	0.526	0.5	0.32
N-10-08_5.1		244	30	103.1	0.13	2579	±26	2725	±11	+6	12.75	1.4	0.492	1.2	0.88
N-10-08_4.1re	0.01	2311	295	572.8	0.13	1634	±16	2605	±28	+42	6.96	2.0	0.288	1.1	0.54
N-10-08_3.1	0.02	511	30	224.0	0.06	2658	±23	2696	±6	+2	13.00	1.1	0.510	1.0	0.94
N-10-08_3.2	0.00	255	85	110.4	0.34	2634	±11	2700	±13	+3	12.89	0.9	0.505	0.5	0.53
N-10-08_1.1re	0.86	39	24	15.1	0.65	2416	±44	3073	±24	+26	14.62	2.6	0.455	2.2	0.82
N-10-08_1.1	0.00	2446	676	1173.2	0.29	2860	±22	2804	±3	-2	15.19	1.0	0.558	0.9	0.98
Амфибол-биотитовый гнейс (Н-10-07)															
N-10-07_2_1re	0.00	1340	659	611.9	0.51	2748	±22	2765	±4	+1	14.12	1.0	0.532	1.0	0.96
N-10-07_3.1		2049	9	868.1	0.00	2585	±11	2648	±7	+3	12.21	0.6	0.493	0.5	0.78
N-10-07_2.1	0.01	78	25	36.9	0.33	2824	±40	2761	±15	-3	14.57	2.0	0.550	1.7	0.88
N-10-07_1.1	0.10	206	182	92.2	0.92	2707	±28	2778	±12	+3	13.97	1.5	0.522	1.3	0.86
N-10-07_3.1re	0.17	93	29	40.3	0.32	2630	±36	2811	±20	+8	13.76	2.1	0.504	1.7	0.80
N-10-07_4.1	0.07	73	35	34.3	0.50	2828	±38	2874	±16	+2	15.63	1.9	0.551	1.7	0.86

Таблица 1. Изотопные U-Pb данные для циркона из гнейсов Ингозерского массива. Table1. Isotope U-Pb zircon data for zircons of the gneisses of the Ingozero massive.

Ошибки приведены на уровне 16; Pbc and Pb* общий и радиогенный свинец. соответственно

Рис. 3. Катодолюминесцентные изображения кристаллов циркона и точки датирования для: а – амфиболбиотитового гнейса (H-10-07); б – биотит-амфиболового гнейса (H-10-08).

Fig. 3. CL images of zircon and SHRIMP-II points for: a – Amp-Bt gneisses (H-10-07), b – Bt-Amph gneisses (H-10-08).

Благодарности

Авторы выражают искреннюю благодарность директору ГИ КНЦ РАН Козлову Н.Е. и Козловой Н.Е. за консультации.

Рис. 4. Изотопная U-Pb диаграмма для циркона из: а – амфибол-биотитового гнейса (H-10-07), б – биотитамфиболового гнейса (H-10-08).

Fig. 4. U-Pb diagram for zircon: a – Amp-Bt gneisses (H-10-07), b – Bt-Amp gneisses (H-10-08).

Рис. 5. Распределение возрастов циркона в амфиболбиотитовом и биотит-амфиболовом гнейсах.

Fig. 5.Probability of zircon ages of Amp-Bt gneisses and Bt-Amp gneisses.

Рис. 6. Th/U отношения для циркона из амфиболбиотитового и биотит-амфиболового гнейсов.

Fig. 6. Th/U ratios for zircon of Amp-Bt gneisses and Bt-Amp gneisses.

Работа выполнена по теме НИР 0226-2019-0052.

Литература

- 1. Балаганский В.В. Главные этапы тектонического развития северо-востока Балтийского щита в палеопротерозое. Автореф. дисс. д.г.-м.н. СПб. 2002. 32 с.
- Козлов Н.Е., Сорохтин Н.О., Глазнев В.Н., Козлова Н.Е., Иванов А.А., Кудряшов Н.М., Мартынов Е.В., Тюремнов В.А., Матюшкин А.В., Осипенко Л.Г. Геология архея Балтийского щита. СПб. Изд-во: Наука. 2006. 329 С.
- 3. Ниткина Е.А., Баянова Т.Б. Изотопно-геохронологическое изучение пород Ингозерского массива (Кольский полуостров) // Вестник Мурманского государственного университета. 2018. Т. 21. № 1. С. 51–60. https://doi. org/10.21443/1560-9278-2018-21-1-51-60.
- Объяснительная записка к геологической карте северо-восточной части Балтийского щита масштаба 1:500 000 / Ред. Ф.П. Митрофанов. Апатиты. Изд-во: КНЦ РАН. 1994. 95 С.
- Пыстина Ю.И., Пыстин А.М. Распределение U и Th в цирконах метаморфических пород и гранитоидов севера Урала // 12-я Межрегиональная научно-практическая конф. Уфа. 21–23 мая 2018 г. Спб. Изд-во: Свое издательство. 2018. С. 294–299.