## Роль карбонатных расплавов в формировании мантийного источника санукитоидов

#### Егорова Ю.С.

ИГГД РАН, Санкт-Петербург, axoxyx2014@gmail.com

Аннотация. Санукитоиды – архейские высоко-Mg Ba-Sr-гранитоиды и связанные с ними ультрамафитмафиты являются первым значительным проявлением мантийного магматизма повышенной щелочности в истории Земли. Обогащение LREE, Ba, Sr, K, P ранних мафит-ультрамафитовых фаз санукитоидных интрузий наряду с мантийными изотопными характеристиками указывает на то, что их источником были метасоматизированные породы мантии. В данной работе впервые предложена модель, в которой агентом метасоматоза являются ювенильные карбонатные расплавы, образующиеся в субконтинентальной литосферной мантии в равновесии с Amp  $\pm$  Phl  $\pm$  Gnt - перидотитом при P = 21-31 кбар и T = 930-1080 °C в окислительных условиях ( $f_{02}$ ~QFM). Декарбонизация этих расплавов при подъеме выше 60-65 км (P = 2 ГПа) приводит к формированию обогащенных LREE, LILE и P верлитов. Частичное плавление этих пород могло произвести расплавы, отвечающие по составу примитивным санукитоидам.

**Ключевые слова:** санукитоиды, неоархей, метасоматоз мантии, Карельская провинция, Фенноскандинавский щит.

# The role of carbonate-rich melts in formation of the mantle sanukitoid source

#### Egorova Yu.S.

IPPG RAS, St. Petersburg, axoxyx2014@gmail.com

Abstract. Sanukitoids are Archean high-Mg Ba-Sr granitoids, and associated ultramafic-mafic rocks are the first significant evidence of mantle subalkaline magmatism in the Earth's history. The enriched in LREE, Ba, Sr, K, P of the early mafic-ultramafic phases of the sanucitoid intrusions, along with the mantle isotope signatures, indicates that it occurred from metasomatized mantle rocks. In this paper, for the first time, a model is proposed, in which metasomatic agents are juvenile carbonate melts formed in the subcontinental lithospheric mantle in equilibrium with Amp  $\pm$  Phl  $\pm$  Gnt - peridotite at P = 21-31 kbar and T = 930-1080 °C under oxidizing conditions ( $f_{02} \sim QFM$ ). The decarbonization of these melts above 60-65 km (P = 2 GPa) leads to the formation of enriched in LREE, LILE, and P wehrlites. Partial melting of these rocks could produce melts corresponding in composition to primitive sanukitoids.

Keywords: sanukitoids, Neoarchean, mantle metasomatism, Karelian province, Fennoscandian Shield.

#### Введение

На всех архейских кратонах становление санукитоидных интрузий произошло на границе мезо-неоархея в узком интервале времени после формирования, деформации и метаморфизма основного объема коры, слагающей гранит-зеленокаменные области, и предшествовало внедрению К-гранитов и щелочных пород на завершающих этапах кратонизации. Из этого следует, что их формирование связано с закономерным этапом эволюции континентальной литосферы. Существование аналогов архейских санукитоидов – высоко-Mg Ba-Sr-гранитоидов и связанных с ними ультрамафитмафитов в фанерозое (Fowler et al., 2008; Choi et al., 2009 и др.), свидетельствует о том, что такие условия не являлись уникальными только для архея, как предполагалось, например, в работе (Martin et al., 2009). Высокая магнезиальность санукитоидов наряду с обогащением LREE, Ba, Sr, P и щелочами объясняется происхождением первичных санукитоидных расплавов из метасоматизированного мантийного источника (Shirey, Hanson, 1984; Lobach-Zhuchenko et al., 2005, и др). При этом состав агентов и механизмы метасоматоза мантии остаются дискуссионными. Это, в частности, связано с широким разнообразием составов пород, слагающих санукитоидные комплексы.

Анализ геохимических и изотопных данных для санукитоидов Карельской провинции (более 20 интрузий) позволил установить, что *мантийные изотопные характеристики*, как правило, со-

храняют *санукитоиды умереннощелочного ряда*, наиболее *обогащенные LREE, Ba, Sr, K, P* (Егорова, 2014). Такие санукитоиды входят в состав массивов Панозеро, Эльмус, Хижъярви, Шаравалампи и др. При внедрении в кору санукитоидные расплавы в разной степени претерпели контаминацию, что изменило их состав и первичные изотопные характеристики в сторону таковых во вмещающих ТТГ породах (Егорова, 2014 и др.). Поэтому дальнейшие рассуждения о составе и условиях формирования метасоматизированного мантийного источника основываются на составе ранних фаз санукитоидных интрузий Карельской провинции, сохраняющих мантийные изотопные характеристики.

#### Краткая геохимическая и изотопная характеристика примитивных санукитоидов

По химическому составу они варьируют от ультрабазитов с 37 % SiO<sub>2</sub> до монцодиоритов с 57 % SiO<sub>2</sub>, mg# = 0.80-0.54, MgO = 17-6 %, Cr = 50-500 ppm, Al<sub>2</sub>O<sub>3</sub> = 7-15.5, K<sub>2</sub>O = 1-4.2 %, Sr до 2000 ppm, Ba до 2500 ppm, P<sub>2</sub>O<sub>5</sub> до 2.5 %, Ce до 200 ppm, Sm до 20 ppm и La<sub>N</sub>/Yb<sub>N</sub> = 10-30 при Yb ~ 2 ppm. Концентрации LREE снижаются по мере уменьшения содержания SiO<sub>2</sub> (рис. 1a). Начальные изотопные отношения <sup>238</sup>U/<sup>204</sup>Pb (2.73 млрд. лет) = 9 ± 0.2,  $\varepsilon_{Nd}$ (2.73 млрд. лет) = +1.6 ± 0.5 и изотопный состав углерода карбонатов ( $\delta^{13}$ C = -6 ± 2 ‰) отвечают мантийным значениям (Егорова, 2014).

#### Формирование метасоматизированного мантийного источника санукитоидов

Формирование метасоматизированного мантийного источника санукитоидов изначально связывалось с взаимодействием отделившихся от слэба флюидов/расплавов с мантийным перидотитом в зоне субдукции (Stern, Hanson, 1991; Самсонов и др., 2004; Martin et al., 2009, и др.). Экспериментальные работы (Rapp et al., 2010) и численное моделирование условий формирования и плавления источника санукитоидов (Самсонов и др., 2004; Oliveira et al., 2010; Semprich et al., 2015) с некоторыми допущениями удовлетворительно объясняют получение санукитоидов гранитоидного состава. Однако расчеты для менее дифференцированных санукитоидов провинции Сьюпериор (Semprich et al., 2015) показали необходимость привлечения дополнительного вещества, например, добавления в мантийный источник 5 % карбонатитов. С другой стороны, если источником К, LREE, P, Ba и Sr являлись породы субдуцирующей коры, то должна наблюдаться положительная корреляция между их концентрацией и долей коровой компоненты в изотопном составе Nd, Pb и Hf. Тем не менее, она отсутствует (Heilimo et al., 2010); наоборот, близкие к мантийным значения величин  $\varepsilon_{s_{14}}(t)$ ,  $\mu(t)$  (<sup>238</sup>U/<sup>204</sup>Pb<sub>2</sub>) характерны для санукитоидов, имеющих высокую степень обогащения некогерентными элементами (Егорова, Лобиков, 2013; Егорова, 2014). Поэтому привнос в источник К, Ва и Sr был объяснен подъемом астеносферного вещества (Heilimo et al., 2010 и др.). На связь метасоматоза мантии с мантийными флюидами/расплавами также указывает изотопный состав углерода карбонатов Эльмусского и Панозерского массивов (Лохов и др., 2008) и близкого санукитоидам по возрасту и составу карбонатитового массива Ликаманникко в Финляндии (Mikkola et al., 2011).

Экспериментальные данные последних десятилетий позволяют предполагать, что в астеносфере за счет содержания  $H_2O$  до 200 г/т в дефектах структуры нормативно безводных минералов между дегидратационным и сухим солидусом (заштрихованная область на рис. 1г) и интервале глубин 250-90 км должны зарождаться малые фракции расплавов, обогащенных несовместимыми элементами, особенно LREE, Ba, Sr, K, P, C и H (Green, 2015). Миграция этих расплавов вдоль геотермы обуславливает обеднение нижней и *обогащение верхней астеносферы*, обеспечивая ее гетерогенность (Green, 2015). В окислительных условиях ( $fO_2 \sim IW+ 3-4 \log$  ед., величина, близкая к таковой в QFM буфере) и диапазоне температур 930-1200 °C подъем астеносферного вещества выше 90-95 км (30-32 кБар) приводит к реакции с образованием паргасита и небольшой фракции равновесного с ним карбонатного расплава (Wallace, Green, 1988). Этот расплав будет обогащен LREE, Ва, Sr, P и обеднен HFSE и HREE (рис. 1в). Содержание и соотношение щелочей будет определяться концентрацией K и Na в системе (Sweeney, 1994; Martin et al., 2013). Большая подвижность карбонатного расплава должна обеспечивать его подъем из области генерации до уровня декарбонизации (~ 60-65 км (21 кбар), рис. 1 г) согласно реакции: Ol + OPx + L<sub>Carb</sub> = Ol + CPx + CO<sub>2</sub>, что приве-



Рис. 1. (а-б) – спектры распределения редких и редкоземельных элементов, нормированные на примитивную мантию по (Sun, McDonough, 1989), для средних составов ранних магматических фаз ультраосновного и основного состава (1) санукитоидных интрузий Карелии: (а) – в сравнении с санукитоидами среднего и кислого состава умереннощелочного (2) и нормальнощелочного ряда (3), а также со средним составом архейских ТТГ Фенноскандинавского щита (по Чекулаеву и Глебовицкому, 2017); (б) – в сравнении с карбонатитами Сийлинъярви (по O'Brien et al., 2015); (в) – распределение редких элементов между карбонатным и силикатным расплавом в присутствии воды при P = 10-30 кбар и T = 1050-1260 °C (Martin et al., 2013). (г) – РТ диаграмма, определяющая условия возникновения мантийных карбонатных расплавов в равновесии с паргаситом в условиях внутриплитного режима при P = 2-3.2 ГПа: 0.3 wt % H<sub>2</sub>O и 0.5-2.5 wt % CO<sub>2</sub> по (Green, 2015). Солидус верлита и линии фазового перехода для карбонатной фазы даны по (Lee, Wyllie, 2000). Линия устойчивости флогопита дана по (Mengel, Green, 1989), архейская геотерма по (Santosh et al., 2010).

Fig. 1. (a-6) – average primitive mantle normalized (Sun, McDonough, 1989) trace and REE patterns for the early ultrabasic and basic magmatic phases (1) of the Karelia sanukitoid intrusions: (a) – in comparison with felsic sanukitoids of subalkaline series (2) and calk-alkaline series (3) and with average Archean TTG of the Fennoscandian Shield after (Chekulaev, Glebovitsky, 2017); (6) – with the Siilinjärvi carbonatites (O'Brien et al., 2015); (B) – distribution of rare elements between carbonate and silicate melt under water-saturated conditions at P = 10–30 kbar and T = 1050-1260 °C (Martin et al., 2013). (r) – PT diagram determining the conditions for the appearance of mantle carbonate melts in equilibrium with pargasite under the intraplate conditions at P = 2-3.2 GPa; 0.3 wt. % H<sub>2</sub>O and 0.5-2.5 wt. % CO<sub>2</sub> (Green, 2015). Solidus wehrlite and carbonate phase transition are given after (Lee, Wyllie, 2000), the phlogopite stability line after (Mengel, Green, 1989) and Archean geotherm after (Santosh et al., 2010).

дет к формированию метасоматизированных пород мантии – верлитов, содержащих Ap ± Amp ± Phl (Green, Wallace, 1988; Sweeney, 1994; Lee, Wyllie, 2000). При дополнительном притоке тепла, участки верлитовой мантии будут плавиться в первую очередь (рис. 1 г), с образованием обогащенных LREE, Ba, Sr, P и щелочами расплавов. В случаях, когда существуют благоприятные условия для быстрого выведения карбонатных расплавов на поверхность, согласно модели (Green, Wallace, 1988), будут формироваться щелочные карбонатитовые комплексы, такие, как, например, Сийлинъярви в Западной Карелии (2.62 млрд. лет). Спектр распределения редких элементов для средних составов ранних ультрамафитмафитовых фаз санукитоидов имеет большое сходство со спектром неоахейских мантийных карбонатитов Сийлинъярви (рис. 1 б) и хорошо согласуется с экспериментально установленным (Martin et al., 2013) распределением редких элементов в карбонатный расплав при T = 1050-1260 °C, P = 1-3 ГПа в присутствии H<sub>2</sub>O (рис. 1 в). Также карбонатиты Сийлинъярви имеют сходный с примитивными санукитоидами изотопный состав неодима ( $\varepsilon_{Nd}(2.61) = +2.3$ ) и изотопный состав С и O ( $\delta^{13}C = -3.7\%$ ,  $\delta^{18}O = 7.4\%$ ) (Tichomirova et al., 2006). Вывод о возможном участии карбонатных расплавов в формировании обогащенного мантийного источника санукитоидов подтверждается результатами численного моделирования (Semprich et al., 2015).

#### РТ режим и окислительно-восстановительные условия в архейской мантии

Окислительные условия ( $f_{02} \sim$  как в QFM буфере), необходимые для образования первичных карбонатных расплавов в равновесии с паргаситом, реализуются в субконтинентальной верхней мантии под утолщенной зрелой корой континентов (Green, Wallace, 1988). Это согласуется со становлением санукитоидов на всех древних кратонах после формирования основного объема континентальной коры в посттектонических условиях.

Охлаждение литосферы на глубине 60-90 км до температур около  $1000 \,^\circ$ C является вторым необходимым условием, так как архейская геотерма проходит правее карбонатного окна, что делает невозможным появление карбонатных расплавов в равновесии с паргаситом, а также существования флогопита и амфибола на глубинах больше 65 км (рис. 1 г). Вероятно, это и происходило на рубеже мезо- и неоархея на нашей планете и объясняет отсутствие похожих на санукитоиды пород в более ранней истории Земли. Так как современная геотерма под зрелыми континентами лежит в области существенно более низких температур относительно карбонатного окна (рис. 1 г), фанерозойские аналоги санукитоидов (Ba-Sr габбро-гранитоидные комплексы) редки, хотя и описаны в ряде районов (Fowler et al., 2008; Choi et al., 2009, и др.). Происхождение последних связывается с астеносферным поднятием (оно обеспечивает приток тепла и некогерентных элементов (LREE, LILE, P, H-C-O) в верхние слои мантии) в результате деламинации (отслоения) нижних слоев литосферы (Choi et al., 2009 и др.) или обрыва субдуцирующего слэба (Fowler et al., 2008, и др.) на постколлизионной стадии формированию архейских санукитоидов, так как их становление на всех кратонах происходило на завершающих стадиях консолидации коры.

### Общая петрологическая модель, объясняющая геохимические особенности мантийных санукитоидных расплавов

Обогащение Ba, Sr, P, LREE и щелочами, обеднение HFSE, HREE, Y и характерный профиль спектра распределения редких элементов примитивных санукитоидов формируются в результате нескольких этапов фракционирования: (1) – образование малых фракций расплавов в астеносфере, обогащенных несовместимыми элементами (LREE, Ba, Sr, K, Na, P, C и H) и их подъем, (2) – на границе 90-95 км (30-32 кБар) при 930 °C < T < 1200 °C и fO<sub>2</sub> ~ IW+ 3–4 log ед. – реакция с образование малых обогащение карбонатного расплава LREE, Ba, Sr, K, Na и P, обеднение HFSE и HREE, (3) – подъем карбонатного расплава до 60-65 км  $\rightarrow$  декарбонизация и метасоматическая реакция с вмещающим перидотитом  $\rightarrow$  образование обогащенного верлита, наследующего спектр распределения редких элементов от карбонатного расплава; (4) – дополнительный приток тепла  $\rightarrow$  плавление обогащенного верлита с образованием первичных санукитоидных расплавов (рис. 1 г).

#### Выводы

Специфика химического состава примитивных санукитоидов хорошо согласуется с экспериментально установленным (Martin et al., 2013) распределением редких элементов в карбонатный расплав при T = 1050-1260 °C, P = 1-3 ГПа в присутствии  $H_2O$ . Карбонатные расплавы по данным экспериментов могут формироваться в субконтинентальной литосферной мантии в равновесии с Amp  $\pm$  Phl  $\pm$  Gnt - перидотитом в окислительных условиях ( $f_{O2} \sim$  как в QFM буфере) при P = 21-31 кбар и T = 930-1080 °C (Wallace, Green, 1988; Sweeney, 1994). В конце архея такие условия могли быть реализованы за счет увеличение мощности континентальной коры и постепенного охлаждения литосферы кратонов. В фанерозойское время для создания аналогичных условий, наоборот, требовался дополнительный приток тепла (рис. 1 г).

Формирование метасоматизированных пород мантии – обогащенных LREE, LILE и P верлитов, – возможно в результате декарбонизации карбонатных расплавов на границе 60-65 км (P ~ 2 ГПа), приводящей к реакции с вмещающими породами: Ol + OPx +  $L_{Carb}$  = Ol + CPx + CO<sub>2</sub> ± Ap ± Amp ± Phl (Green, Wallace, 1988; Sweeney, 1994; Lee, Wyllie, 2000). Частичное плавление этих пород может произвести расплавы, отвечающие по составу примитивным санукитоидам.

Обогащение и плавление мантийного источника были близки во времени, о чем свидетельствуют мантийные изотопные характеристики примитивных санукитоидов. Эти процессы происходили в начале неоархея почти синхронно на всей территории Карельского кратона, так как одновозрастные (2.74 ± 0.1 млрд. лет) санукитоиды с мантийными изотопными характеристиками присутствуют в разновозрастных доменах (Ликаманникко – Западно-Карельский домен, Панозеро и др. – Центрально-Карельский домен, Эльмус – Водлозерский домен).

Работа выполнена в рамках темы НИР ИГГД РАН № 0153-2019-0001.

#### Литература

- 1. Егорова Ю.С., Лобиков А.Ф. Изотопный состав свинца и неодима санукитоидов Карелии как свидетельство их гетерогенной природы // Доклады АН. 2013. Т. 453. № 2. С. 196–200. DOI: 10.7868/ S0869565213320170.
- 2. Егорова Ю.С. Санукитоиды Фенно-Карельской провинции Балтийского щита: геология, состав, источники. Автореф. канд. дис-ии. С.-Петербург. 2014. 20 с.
- 3. Лохов К.И., Егорова Ю.С., Лобач-Жученко С.Б. и др. Изотопный состав углерода и кислорода карбонатов из архейских санукитоидных интрузий Карелии: к проблеме мантийного флюида // Региональная геология и металлогения. 2008. № 36. С. 28–39.
- 4. Самсонов А.В., Бибикова Е.В., Ларионова Ю.О. и др. Магнезиальные гранитоиды (санукитоиды) Костомукшского района, Западная Карелия: петрология, геохронология и тектонические условия становления // Петрология. 2004. Т. 12. № 5. С. 495–529.
- 5. Чекулаев В.П., Глебовицкий В.А. О среднем составе ТТГ (тоналит-трондьемит-гранодиоритовой) ассоциации: возможности использования // Доклады АН. 2017. Т. 472. № 2. С. 192–196. DOI: 10.7868/ S0869565217020177.
- Choi S.-G., Rajesh V.J., Seo J. et al. Petrology, geochronology and tectonic implications of Mesozoic high Ba–Sr granites in the Haemi area, Hongseong Belt, South Korea // Island Arc. 2009. V. 18. P. 266–281. DOI:10.1111/ j.1440-1738.2008.00622.x.
- Fowler M.B., Kocks H., Darbyshire D.P.F., Greenwood P.B. Petrogenesis of high Ba-Sr plutons from the Northern Highlands Terrane of the British Caledonian Province // Lithos. 2008. V. 105. P. 129–148. DOI: 10.1016/j. lithos.2008.03.003.
- Green D.H., Wallace M.E. Mantle metasomatism by ephemeral carbonatite melts // Nature. 1988. V. 336. P. 459–462.
- 9. Green D.H. Experimental petrology of peridotites, including effects of water and carbon on melting in the Earth's upper mantle // Phys. Chem. Minerals. 2015. V. 42. P. 95–122. DOI: 10.1007/s00269-014-0729-2.
- Heilimo E., Halla J., Hölttä P. Discrimination and origin of the sanukitoid series: Geochemical constraints from the Neoarchean western Karelian Province (Finland) // Lithos. 2010. V. 115. P. 27–39. DOI: 10.1016/j. lithos.2009.11.001
- 11. Lee W.J., Wyllie P.J. The system CaO-MgO-SiO<sub>2</sub>-CO<sub>2</sub> at 1GPa, metasomatic wehrlites, and primary carbonatite magmas // Contr. to Mineral. and Petrol. 2000. V. 138. P. 214–228.
- Lobach-Zhuchenko S.B., Rollinson H.R., Chekulaev V.P., et al. The Archaean sanukitoid series of the Baltic Shield: geological setting, geochemical characteristics and implications for their origin // Lithos. 2005. V. 79. P. 107–128. DOI: 10.1016/j.lithos.2004.04.052.
- Mengel K., Green D.H. Stability of amphibole and phlogopite in metasomatized peridotite under water-saturated and water-undersaturated conditions // Fourth International Kimberlite Conference, Perth. Geol. Soc. Aust. Spec. Publ. 1989. V. 14. P. 571–581.

- Martin H., Moyen J.F., Rapp R.P. The sanukitoid series: magmatism at the Archaean–Proterozoic transition // Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 2009. V. 100. N. 1-2. P. 15–33. DOI: 10.1130/2010.2472(02).
- 15. Martin L.H.J, Schmid M.W, Mattsson H.B, Guenther D. Element Partitioning between Immiscible Carbonatite and Silicate Melts for Dry and H2O-bearing Systems at 1-3 GPa // J. Petrol. 2013. V. 54. № 11. P. 2301–2338. DOI:10.1093/petrology/egt048.
- Mikkola P., Salminen P., Torppa A., Huhma H. The 2.74 Ga Likamännikkö complex in Suomussalmi, East Finland: lost between sanukitoids and truly alkaline rocks? // Lithos. 2011. V. 125. P. 716–728. DOI:10.1016/j. *lithos*.2011.04.002.
- O'Brien H., Heilimo E., Heino P. The Archean Siilinjärvi Carbonatite Complex // Mineral Deposits of Finland. 2015. Chapter 4.3. P. 327–343.
- Oliveira M.A., Dall'Agnol R., Scaillet B. Petrological Constraints on Crystallization Conditions of Mesoarchean Sanukitoid Rocks, Southeastern Amazonian Craton, Brazil // Journal of Petrology. 2010. V. 51. P. 2121–2148. DOI:10.1093/petrology/egq051.
- Rapp R., Norman M., Laporte D. et al. Continent Formation in the Archean and Chemical Evolution of the Cratonic Lithosphere: Melt–Rock Reaction Experiments at 3–4 GPa and Petrogenesis of Archean Mg-Diorites (Sanukitoids) // Journal of Petrology. 2010. V. 51. P. 1237–1266. DOI:10.1093/petrology/egq017.
- Santosh M., Maruyama Sh., Komiya T., Yamamoto Sh. Orogens in the evolving Earth: from surface continents to 'lost continents' at the core-mantle boundary // Geol. Soc. London. Spec. Publ. 2010. V. 338. P. 77–116. DOI: 10.1144/SP338.5.
- 21. Semprich J., Moreno J.A., Oliveira E.P. Phase equilibria and trace element modeling of Archean sanukitoid melts // Precambrian Research. 2015. V. 269. P. 122–138. DOI:10.1016/j.precamres.2015.08.004.
- 22. Stern R., Hanson G. Archean high-Mg granodiorite: a derivative of light rare earth element-enriched monzodiorite of mantle origin // J. Petrol. 1991. V. 32. №1. P. 201–238. DOI: 10.1093/petrology/32.1.201.
- 23. Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes // Geol. Soc., Special Publications. 1989. V. 42. P. 313–345.
- 24. Sweeney R.J. Carbonatite melt compositions in the Earth's mantle // Earth Planet. Sci. Lett. 1994. V. 128. P. 259–270. DOI:10.1016/0012-821x(94)90149-x.
- Tichomirova M., Grosche G., Götze J. et al. The mineral isotope composition of two Precambrian carbonatite complexes from the Kola Alkaline Province—alteration versus primary magmatic signatures // Lithos. 2006.
  V. 91. P. 229–249. DOI:10.1016/j.lithos.2006.03.019.
- 26. Wallace M.E., Green D.H. An experimental determination of primary carbonatite magma composition // Nature. 1988. V. 335. P. 343–346.