Карбонатиты, фениты и карбонатно-щелочные метасоматиты Западного Прибайкалья: минералого-геохимическое сопоставление

Савельева В.Б., Базарова Е.П.

Институт земной коры СО РАН, Иркутск, vsavel@crust.irk.ru

Аннотация. Проведено минералого-геохимическое сопоставление доломит-анкеритовых карбонатитов, фенитов и карбонатно-щелочных метасоматитов Западного Прибайкалья. По петрографическим признакам отличить карбонатно-щелочные метасоматиты от фенитов трудно. Более показательны присутствие акцессорных минералов Nb в фенитах и U-содержащих минералов в карбонатно-щелочных метасоматитах, а также особенности редкоэлементного состава пород.

Ключевые слова: Западное Прибайкалье, карбонатиты, фениты, карбонатно-щелочные метасоматиты, альбитизация, рибекитизация, доломитизация.

Carbonatites, fenites and carbonate-alkaline metasomatites of the Western Baikal region: mineralogical and geochemical comparison

Savelyeva V.B., Bazarova E.P.

Institute of the Earth's Crust, SB RAS, Irkutsk, vsavel@crust.irk.ru

Abstract. The mineralogical and geochemical comparison of dolomite-ankerite carbonatites, fenites and carbonate-alkaline metasomatites of the Western Baikal region was carried out. According to petrographic features, it is difficult to distinguish carbonate-alkaline metasomatites from fenites. The presence of accessory Nb minerals in fenites and U-containing minerals in carbonate-alkaline metasomatites, as well as the features of rare-element composition of rocks, are more indicative.

Key words: Western Baikal Area, carbonatites, fenites, carbonate-alkaline metasomatites, albitization, riebeckitization, dolomitization.

Введение

Карбонатиты являются одними из наиболее интересных с точки зрения геохимии и генезиса производными мантийного магматизма, имеющими важное экономическое значение, поскольку с ними связаны крупные ресурсы Ta, Nb, *REE*, Fe, Ti, P, Cu и др. Становление карбонатитов обычно сопровождается фенитизацией – высокотемпературным щелочным метасоматозом. Иногда щелочные метасоматиты содержат редкометалльную (Nb, Zr, *REE*) минерализацию.

В отличие от фенитов, щелочно-карбонатные метасоматиты является поисковым признаком для гидротермальных месторождений урана. При этом остается много вопросов в отношении состава минерализирующих флюидов, их источников, физико-химических условий отложения руды и др. Высказывается мнение о генетической связи месторождений с карбонатитовым и/или щелочным магматизмом (Wilde, 2013).

В пределах Байкальского выступа на юге Сибирского кратона известны проявления как карбонатитов, сопровождающихся ореолами фенитизации во вмещающих породах, так и проявления карбонатно-щелочного метасоматоза, что позволяет провести их сопоставление.

Геологическая позиция

Карбонатиты и карбонатно-щелочные метасоматиты локализованы в южной части Байкальского краевого выступа Сибирского кратона и приурочены к зоне сочленения кратона и Саяно-Байкальской складчатой области. Район сложен метаморфизованными терригенно-вулканогенными образованиями PR₁, син-и постколлизионными гранитами (возраст постколлизионных гранитов 1.86 млрд. лет (Донская и др., 2003)) и прорывающими их дайками габбро-диабазов с возрастом 787±21 млн. лет (Gladkochub et al., 2010).

Минералы	1	2	3	4
Магнетит Fe ₃ O ₄	+	+	+	+
Ильменит FeTiO ₃	+	+	+	+
Экандрюсит (Zn, Fe ²⁺ , Mn ²⁺)TiO ₃	+			
Гематит Fe ₂ O ₃		+		
Рутил TiO ₂	+	+	+	+
Пирохлор (Ca, Na) ₂ Nb ₂ O ₆ (OH, F)	+			
Ферроколумбит Fe ²⁺ Nb ₂ O ₆		+		
Эвксенит-(Y) (Y, Ca, Ce, U,Th)(Nb, Ta, Ti) ₂ O ₆	+			
Эшинит-(Ce) (Ce, Ca, Fe, Th)(Ti, Nb) ₂ (O, OH) ₆			+	
Кричтонит (группа)		+		+
Циркон ZrSiO ₄	+	+	+	+
Торит ThSiO ₄	+		+	+
Церит-(Ce) (Ce, Ca) ₉ (Mg, Fe ²⁺)Si ₇ (O, OH, F) ₂₈			+	+
Таленит-(Y)? Y ₃ Si ₃ O ₁₀ (F,OH)		+		
Алланит-(Ce) (Ce, Ca, Y) ₂ (Al, Fe ³⁺) ₃ (SiO ₄) ₃ (OH)	+		+	+
Титанит CaTiSiO ₅			+	+
Sr-эпидот (Ca, Sr) ₂ (Al, Fe ³⁺) ₃ (SiO ₄) ₃ (OH)				+
Фторапатит Са ₅ (РО ₄) ₃ F	+	+	+	+
Монацит-(Ce) (Ce, La, Nd, Th)PO ₄	+	+	+	+
Ксенотим-(Ү) ҮРО ₄	+	+		+
Бастнезит-(Ce) (Ce, La)CO ₃ F	+			+
Бурбанкит (Na, Ca) ₃ (Sr, Ba, Ce)(CO ₃) ₅	+			
Барит ВаSO ₄	+	+	+	+
Пирит FeS ₂	+	+	+	+
Халькопирит CuFeS ₂	+		+	+
Галенит PbS	+			+
Сфалерит ZnS	+			
Сульфиды Си (и Ві)*				+
Смитсонит ZnCO ₃	+	+		
Церуссит РbCO ₃	+			
Настуран**				+

Габлица 1. Акцессорные минералы карбонатитов и мет	асоматитов
Table 1. Accessory minerals of carbonatites and metas	omatites.

Примечание. 1-3 – Онгуренский комплекс: 1 – доломит-анкеритовые карбонатиты, 2 – микроклиновые метасоматиты; 3 – магнезиорибекитовые метасоматиты; 4 – карбонатно-щелочные метасоматиты (в целом). * – борнит Cu₅FeS₄, ярроуит Cu₉S₈, ковеллин CuS, халькокит Cu₂S, виттихенит Cu₃BiS₃; ** – по данным Сосновской экспедиции.

Note: 1-3 – Ongurensky complex: 1 – dolomite-ankerite carbonatites, 2 – microcline metasomatites, 3– magnesioribekite metasomatites; 4 – carbonate-alkaline metasomatites (in general). * – bornite Cu_5FeS_4 , yarrowite Cu_9S_8 , and covellite CuS, chalcocite Cu_2S , wittichenite Cu_3BiS_3 ; ** – according to Sosnovskaya expedition.

Онгуренский карбонатитовый комплекс (около 1.0 млрд. лет) (Савельева и др., 2016) включает более 20 даек и жил карбонатитов мощностью от 1-3 см до 1.5 м. Это доломит-анкеритовые карбонатиты, в меньшей мере кальцитовые карбонатиты, силикокарбонатиты и редкие дайки пикритов и фоскоритов. Внедрению карбонатитов предшествовали калиевый метасоматоз и гематитизация, проявленные на участках катаклаза и брекчирования в сотни метров и шириной до 100 м. Рибекитизация развита на участке протяженностью около 10 км, шириной до 2 км. Локально проявлены доломитизация, флогопитизация, апатитизация и др. Район проявления карбонатно-щелочных метасоматитов с бедной U минерализацией (гидратированный настуран, по данным Сосновской экспедиции) сложен биотит-хлоритовыми сланцами, метаэффузивами основного и среднего состава, метапесчаниками, которые прорываются аляскитовыми гранитами. В зоне шириной около 50-70 м натриевый метасоматоз и карбонатизация наложились на катаклазированные и милонитизированные метаэффузивы, аляскиты и дайку лампрофира.

Петрография

Карбонатиты представлены мелкозернистыми, иногда порфировидными породами, на 70-90 % состоящими из карбоната. В кальцитовых карбонатитах кроме кальцита присутствуют флогопит, в небольшом количестве доломит, апатит, титаномагнетит и др. В доломит-анкеритовых карбонатитах карбонат принадлежит к изоморфному ряду доломит $CaMg(CO_3)_2$ – анкерит $Ca(Mg, Fe)(CO_3)_2$. Породы содержат также кальцит, кварц, микроклин, альбит, флогопит, магнезиорибекит, эгирин, магнетит, апатит и др. (табл. 1).

Калиевая фенитизация выражается в появлении в гнейсах и гранитах каемок и прожилков лейстовидного калиевого полевого шпат; исчезновении биотита, который замещается микроклином с вростками магнетита/гематита и рутила. Вблизи карбонатитов в метасоматитах наблюдаются прожилки доломита в ассоциации с флогопитом.

Натриевая фенитизация начинается с раскисления плагиоклаза в гнейсах и гранитах и появлении мелких зерен актинолита; затем возникают каймы щелочного амфибола (± редкий пироксен), замещающего кварц, полевые шпаты и слюду. Породы тыловой зоны образуют прослои мощностью 2-5 см, на 85-90 % сложенные амфиболом (± альбит, кальцит, титанит).

Колонка К-фенитизации:	Колонка Na-фенитизации:
Кв+Пл+Би	Кв+Пл+Би
Микр+Флог (Кв, Пл)	Аб+Акт+Ка (Кв, Би)
Микр (+Мгт/Гем)	Аб+Риб±Ка (Кв)
	Риб (±Аб, Ка)

Fig. 1. Ti – XMg, apfu, diagram for micas. Mica: 1, 2 – fenite: 1 – potassium, 2 – sodium; 3, 4 – carbonate-alkaline metasomatites: 3 – albite-riebeckite, 4 – dolomite-biotite.

На участке карбонатно-щелочного метасоматоза в аляскитах наблюдаются альбитизация, сопровождающаяся образованием рибекита и отложением кальцита, и более поздняя доломитизация. Альбитрибекитовые метасоматиты на 75-80 % сложены шахматным альбитом, среди которого сохраняются кварц и плагиоклаз ранней генерации. Темноцветные минералы представлены мелким биотитом и щелочным амфиболом. Особенно интенсивно амфиболизация проявлена на контакте с дайкой лампрофира. В доломитизированных гранитах альбитизация проявлена неравномерно, микроклин постоянно присутствует; с доломитом ассоциируются биотит и магнетит. В милонитизированных гранитах доломит слагает послойные мелкозернистые прожилки мощностью до 1.5 см с оторочками биотита. Наиболее поздние образования представлены кварцевыми и кварц-карбонатными (± рибекит-асбест, альбит, флогопит, хлорит, флогопит) жилами мощностью до 0.2 м.

Колонки карбонатно-щелочного метасоматоза в аляскитовых гранитах:

Стадия Na-Ca-CO ₂ метасоматоза:	Стадия К-Са-Мg-СО ₂ метасоматоза:
Кв+Микр+Пл _{кисл} (Би)	Кв+Микр+Пл _{кисл} (Би)
Аб+Риб+Ка+Кв+Флог	Дол+Би+Микр (Кв, Аб)
Аб+Риб+Ка	Дол+Би

Минералого-геохимическое сопоставление

В доломитовых карбонатитах состав карбоната варьирует от чистого доломита до железистого доломита: количество (мас. %) FeO до 14 (до 40 мол. % $CaFe(CO_3)_2$), SrO 0.4-0.7, MnO до 1.4. Доломит из калиевых фенитов имеет сходный состав (мас. %): FeO=0.5-14.5 (1.5-42 мол. % $CaFe(CO_3)_2$); MnO 0.4-1.9. В карбонатно-щелочных метасоматитах доломит из метасоматических прожилков содержит (мас. %) 8.7-14.0 FeO (22-38 мол. % $CaFe(CO_3)_2$), до 1.1 MnO. Кальцит содержит 0.25-0.84 мас. % SrO.

Слюда в доломит-анкеритовых карбонатитах представлена зональным флогопитом (X_{Mg} =0.83-0.91 в центре и 0.58-0.64 на краю зерен). В Na-фенитах слюда также представлена флогопитом (X_{Mg} =0.76-0.81), а в К-фенитах – за редким исключением флогопитом и магнезиальным биотитом (X_{Mg} =0.61-0.78). В карбонатно-щелочных метасоматитах слюда, в целом, более титанистая, чем в фенитах; X_{Mg} =0.66-0.75 в альбит-рибекитовых метасоматитах и снижается до 0.53-0.56 в доломитовых прожилках (рис. 1).

Амфибол в карбонатитах представлен магнезиорибекитом и значительно более редким магнезиарфведсонитом. Новообразованные амфиболы в Na-фенитах представлены актинолитом, винчитом и магнезиорибекитом. В карбонатно-щелочных метасоматитах в основном присутствует магнезиорибекит, но отмечаются также рибекит и винчит (рис. 2).

Карбонатиты, фениты и карбонатно-щелочные метасоматиты, содержат, в основном, сходный набор акцессорных минералов (табл. 1). Однако, для карбонатитов и фенитов характерны тантало-и титанониобаты, которые отсутствуют в карбонатно-щелочных метасоматитах. Кроме того, содержание Nb_2O_5 (мас. %) в минералах из фенитов выше, чем в тех же минералах из карбонатно-щелочных метасоматитов: ильменит – до 2 и ниже предела обнаружения, соответственно, рутил – до 7 и 2.4, титанит – до 1.8 и до 0.7. В то же время, минералы из карбонатно-щелочных метасоматитов содер-

Рис. 2. Соотношения Mg/(Mg+Fe²⁺) – Si (a) и (^(IV)Al+Ca) – (Si+Na+K) (б), к.ф., в амфиболах. Амфиболы: 1 – из Na-фенитов; 2 – из карбонатно-щелочных метасоматитов.

Fig. 2. $Mg/(Mg+Fe^{2+}) - Si(a)$ and $(^{(IV)}Al+Ca) - (Si+Na+K)(b)$, apfu, diagrams for amphiboles. Amphiboles: 1 – from Na-phenites; 2 – from carbonate-alkaline metasomatites.

жат повышенные количества UO₂ (мас. %): циркон до 1.1, торит 1.4-4.6, минералы группы кричтонита 2.6-8.9. Для карбонатно-щелочных метасоматитов характерно также большее разнообразие сульфидов.

Доломитовые прожилки в карбонатно-щелочных метасоматитах сходны по содержаниям петрогенных компонентов с доломит-анкеритовыми карбонатитами (табл. 2), однако в прожилках ниже содержания Ln_{ce} , Sr, P, Th и выше U; им присуще слабо дифференцированное распределение лантаноидов (La/Yb=5), наличие Eu минимума (Eu/Eu*=0.69), «пики» U и Pb и отсутствие минимума Zr-Hf на спектре редких элементов, нормированных относительно содержаний в примитивной мантии (рис. 3).

Рис. 3. Спайдерграммы доломит-анкеритового карбонатита (1) и доломитового прожилка (2).

Fig. 3. Spidergrams of dolomite-ankerite carbonatite (1) and a dolomitic veinlet (2).

Таблица 2. Химический состав доломит-анкеритовых карбонатитов (Carb) и метасоматических доломитовых прожилков (Met).

 Table 2. The chemical composition of dolomite-ankerite carbonatites (Carb) and metasomatic dolomite veins (Met).

	SiO ₂	TiO ₂	Al ₂ O ₃	FeO*	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	CO ₂
Carb	15.81	3.85	2.92	11.73	0.35	10.91	21.56	0.26	1.67	2.07	26.94
Met	20.19	4.23	4.01	10.78	0.40	9.49	18.90	0.18	2.53	0.24	26.07
	Sr	Y	Zr	Nb	Ba	La	Ce	Та	Pb	Th	U
Carb	1143	62	385	201	310	217	465	12	21	46	4.3
Met	635	58	145	165	235	36	90	12	38	25	32

Выводы

Только по петрографическим признакам отличить ураноносные карбонатно-щелочные метасоматиты от фенитов трудно. Карбонат и щелочной амфибол в этих породах имеют сходный химический состав. Более показательны особенности химического состава акцессорных минералов и присутствие типоморфных минералов Nb в фенитах и U-содержащих минералов в карбонатнощелочных метасоматитах. Показательно также сопоставление мультиэлементных спектров, позволяющее предполагать отсутствии генетической связи карбонатно-щелочных метасоматитов с карбонатитами.

Работа выполнена в рамках темы НИР №0346-2019-0003 при частичной поддержке РФФИ (грант 17-05-00819).

Литература

- 1. Донская Т.В., Бибикова Е.В., Мазукабзов А.М., Козаков И.К., Гладкочуб Д.П., Кирнозова Т.И., Плоткина Ю.В., Резницкий Л.З. Приморский комплекс гранитоидов Западного Прибайкалья: геохронология, геодинамическая типизация // Геология и геофизика. 2003. Т. 44. № 10. С. 1006–1016.
- 2. Савельева В.Б., Демонтерова Е.И., Данилова Ю.В., Базарова Е.П., Иванов А.В., Каменецкий В.С. Новый карбонатитовый комплекс в Западном Прибайкалье (юг Сибирского кратона): минеральный состав, возраст, геохимия и петрогенезис // Петрология. 2016. Т. 24. № 3. С. 292–324.
- Gladkochub D.P., Pisarevsky S.A., Donskaya T.V., Ernst R.E., Wingate M.T.D., Söderlund U., Mazukabzov A.M., Sklyarov E.V., Hamilton M.A., Hanes J.A., Proterozoic mafic magmatism in Siberian craton: An overview and implications for paleocontinental reconstruction // Precambrian Research. 2010. V. 183. P. 660–668.
- 4. Wilde A. Towards a model for albitite-type uranium // Minerals. 2013. V. 3. P. 36-48.