Новые данные о минералогии золото-уранового рудопроявления Ромпас, Финляндия

Полеховский Ю.С.^{1*}, Петров С.В.¹, Калинин А.А.², Коваль А.В.¹

¹ Институт наук о Земле, СПбГУ, Санкт-Петербург, petrov64@gmail.com ² Геологический институт КНЦ РАН, Anamumы, kalinin@geoksc.apatity.ru

Аннотация. В аншлифах, изготовленных из образцов рудопроявления Ромпас установлено 10 видов рудных минералов: уранинит, самородное золото, мальдонит, монтбрейит, алтаит, мелонит, фробергит, теллурантимон, теллурид висмута BiTe₂, а также оксид теллура теллурит. Изучен состав минералов золота и теллуридов никеля, железа, свинца, висмута и сурьмы. Показано, что развитие минерализации золота и теллуридов проходило многостадийно, и золото неоднократно переотлагалось, сформировав несколько генераций. Такие минералы, как монтбрейит, мелонит, фробергит, теллурантимон, теллурид висмута BiTe₂ и теллурит установлены на рудопроявлении Ромпас впервые.

Ключевые слова: Ромпас, золото-урановая минерализация, золото, мальдонит, монтбрейит, теллуриды, теллурит.

New Data on Mineralogy of the Rompas Uranium-Gold prospect, Finland

Polekhovsky Yu.S.¹, Petrov S.V.¹, Kalinin A.A.², Koval A.V.¹

¹ Institute of Earth Sciences, S-Peterburg State University, S-Peterburg, petrov64@gmail.com ² Geological institute KSC RAS, Apatity, kalinin@geoksc.apatity.ru

Abstract. Ten ore minerals have been found in the specimen from the Rompas prospect: uraninite, native gold, maldonite, montbrayite, altaite, melonite, frobergite, tellurantimony, bismuth telluride $BiTe_2$, tellurium oxide tellurite. Chemical composition of minerals of gold and of tellurides has been studied. Deposition of gold and tellurides has a multi-stage character, gold was redeposited and formed few generations. Montbrayite, melonite, froberfite, tellurantimony, bismuth telluride $BiTe_2$, tellurite have not been reported earlier in the Rompas prospect.

Key words: Rompas, uranium-gold mineralization, gold, maldonite, montbrayite, tellurides, tellurite.

Рудопроявление Ромпас расположено в северной части раннепротерозойского сланцевого пояса Перапохья. Участок рудопроявления сложен метабазальтами с небольшим количеством вулканокластитов, карбонатными породами, кварцитами и графитсодержащими биотитовыми глиноземистыми сланцами (Mineral deposits..., 2015, Molnár et al., 2016, 2017, Гребенкин и др., 2015, Калинин, 2018). Породы претерпели метаморфизм амфиболитовой фации в палеопротерозойское время.

Как метавулканиты, так и метаосадочные породы содержат амфибол-карбонат-кварцевые жилы мощностью до 30 см (Molnár et al., 2016, Гребенкин и др., 2015). Жилы смяты в складки вместе с вмещающими их породами, то есть формировались до пика регионального метаморфизма. Более поздние деформации отразились в будинировании жил, сопровождавшимся переотложением жильных минералов и образованием сигарообразных метровой длины обособлений доломита. С жилами и обособлениями доломита связаны аномально высокие концентрации урана и золота, повышенное содержание битуминозного вещества, развитие порфиробластического уранинита.

Золото-урановая минерализация образуется исключительно в жилах, приуроченных к метабазальтам, а точно такие же по составу и текстурно-структурным особенностям жилы в метаосадках безрудные (Mineral deposits..., 2015, Molnár et al., 2016). Минерализация урана и золота отмечается

^{1*} Данная работа стала одной из последних для Юрия Степановича Полеховского. Юрий Степанович всегда проявлял интерес к новым объектам, новым минералам, вот и этот небольшой образец, подаренный Н.Б. Филипповым, был им изучен весьма основательно. Именно основательность, порядок, внимание к мелочам всегда отличали этого замечательного ученого и известного педагога. Мы взяли на себя труд обработать результаты исследований Ю.С. Полеховского и представить их в виде этой небольшой публикации.

Рис. 1. Золото в срастании с теллуридами, рудопроявление Ромпас.

A – висмутид Au (мальдонит) в ассоциации с самородным золотом, отраженный свет, без анализатора. В – самородное золото с алтаитом в прожилках в уранините, отраженный свет, без анализатора. С – теллурид Bi замещается алтаитом по спайности и с краев, отраженный свет, без анализатора. D – анизотропный теллурид Bi с золотом, отраженный свет, с анализатором. Е – мелонит с выделением самородного золота по спайности, мелонит по краю замещается диоксидом теллура; отраженный свет, без анализатора. F – BSE-фото теллуридов сурьмы и висмута, развивающихся между золотом и мелонитом (NiTe₂). G–H – монтбрейит с теллурантимоном и самородным золотом обрастает каймой фробергита: G – отраженный свет, без анализатора. H – BSE-photo.

Fig. 1. Gold with tellurides, Rompas prospect.

A – maldonite with native gold and altaite, reflected light, one polarizer. B – native gold with altaite in veinlets in uraninite, reflected light, no polarizer. C – bismuth telluride, replaced by altaite along cleavage and at the grain boundaries, reflected light, no polarizer. D – bismuth telluride with gold, reflected light, with a polarizer. E – native gold along cleavage in melonite, reflected light, one polarizer. F – tellurantimony with gold and melonite, BSE-photo. G-H – overgrow of frobergite on the grain of montbrayite with tellurantimony and native gold: G – reflected light, no polarizer; H – BSE-photo.

как в пределах самих амфибол-карбонат-кварцевых жил, так и в их экзоконтактовых зонах в скарноидах (Гребенкин и др., 2015).

Самородное золото и его интерметаллические соединения на рудопроявлении всегда связаны с уранинитом (рис. 1) или с уранинитом и керогенами (Molnár et al., 2016).

Золото выполняет трещины в уранините, образует тонкую вкрапленность в карбонатах вблизи зерен уранинита, отмечается по трещинам усыхания в выделениях углеродистого вещества или нарастает на поверхность зерен керогенов (Molnár et al., 2016). Кроме золота в составе минерализации были отмечены галенит, алтаит, никелин, хунчунит, Pb-содержащий мальдонит, молибденит, кобальтин, пирротин, пентландит, пирит, халькопирит (Molnár et al., 2016).

Самородное золото наблюдалось нами в виде отдельных мономинеральных выделений размером до 7 мм (рис. 1, А), в прожилках по трещинам в уранините (рис. 1, В), а также реакционных каймах между теллуридами в виде цепочек мелких зерен (рис. 1, G).

Золото весьма высокопробное: средний состав изученных нами зерен (n=31): Au - 96.95 % до 99.25 %, в среднем 98.39 мас. %, Ag от 0 до 1.90 %, в среднем 0.87 %, Cu от 0.39 до 1.57, среднее 0.72 %; кроме того, есть два аномальных по содержанию серебра выделения золота с 3.42 и 3.70 % Ag.

Мальдонит Au₂Bi установлен в ассоциации с самородным золотом, зерно золота и мальдонита по краям замещается алтаитом (рис. 1, А). В составе минерала выявляется избыток катиона (табл. 1). Ранее на рудопроявлении Ромпас был описан минерал, близкий по составу к мальдониту (Molnár et al., 2016), но с высоким содержанием свинца, которое превышает содержание висмута: Au_{2.07-2.12} (Pb_{0.51-0.58} Bi_{0.42-0.49}). По этой причине такое соединение правильнее было бы назвать висмутсодержащим хунчунитом. Впрочем, не исключено, что речь идет о новом минеральном виде с формулой Au₄PbBi.

Монтбрейит Au_2Te_3 отмечен в виде гипидиоморфного зерна размером 150×50 мкм в центре полиминерального зонального образования (рис. 1 G, H). По монтбрейиту узкой полосой развивается теллурид сурьмы и висмута, к которому приурочена цепочка мелких (до 10 мкм) выделений самородного золота, и все это обрастает каймой фробергита (рис. 2 G, H). В химическом составе монтбрейита (табл. 1) обнаруживается примесь висмута, но формульные коэффициенты близки к теоретическим. В составе фробергита отмечается некоторый дефицит железа (табл. 1).

Теллурид сурьмы и висмута (теллурантимон - ?) выявлен в виде каймы по границе монтбрейита (Au_2Te_3) и теллурида железа (рис. 1 G, H), а также отмечен по границе между золотом и мелонитом (рис.1, F). Цвет минерала белый с голубоватым оттенком, он отчетливо анизотропный и по оптическим свойствам отвечает теллурантимону Sb₂Te₃. В составе минерала установлена значимая примесь висмута (табл. 1), но формула минерала хорошо рассчитываются на (Sb,Bi)_{2.00}Te_{3.00}. Возможно, выявленная минеральная фаза является промежуточной разновидностью между теллурантимоном и теллуровисмутитом.

Теллурид висмута $BiTe_2$ образует отдельные зерна, кроме того, отмечен в ассоциации с самородным золотом (рис. C, D). Минерал белый с розоватым оттенком и слабым двуотражением, анизотропия отчетливая (рис. 1, D). По трещинам спайности в зерне $BiTe_2$ развивается алтаит. По химическому составу (табл. 1) минерал соответствует формуле $BiTe_2$, но теллуриды висмута с таким соотношением элементов пока неизвестны. Требуется доизучение минерала с получением дополнительных данных.

Алтаит наблюдается в ассоциации с золотом в прожилках в уранините, развивается в виде каймы по золоту и мальдониту, замещает теллурид висмута по трещинам спайности (рис. 1, А-С). В составе алтаита иногда обнаруживается примесь висмута (табл. 1), но формульные коэффициенты близки к стехиометрическим.

Мелонит отмечен в срастании с золотом, иногда золото развито по спайности в мелоните (рис. 1 Е). Замещается мелонит диоксидом теллура. Химические составы мелонита и теллурита (табл. 1, 2) близки к теоретическим.

Таблица 1. Состав минералов золота и теллуридов рудопроявления Ромпас, масс. %.	
Table 1. Composition of gold minerals and tellurides from the Rompas prospect, wt. %.	

Минерал	Fe	Ni	Au	Pb	Sb	Bi	Те	Сумма	Кристаллохимическая формула
	_	_	68.25	—	—	31.75	-	100.00	Au _{2.28} Bi _{1.00}
Маль нонит	_	_	67.40	_	-	32.60	_	100.00	Au _{2.19} Bi _{1.00}
Минерал Мальдонит Монтбрейит Теллурид висмута Мелонит Фробергит Теллурид урьмы и висмута	_	-	68.04	-	-	31.96	-	100.00	Au _{2.26} Bi _{1.00}
	_	_	67.58	_	_	32.42	-	100.00	Au _{2.21} Bi _{1.00}
	_	_	50.00	_	_	2.15	47.85	100.00	$Au_{1.98} Te_{2.92}Bi_{0.08)3.00}$
Минерал Мальдонит Монтбрейит Теллурид висмута Мелонит Фробергит Теллурид сурьмы и висмута	_	_	49.47	_	_	2.72	47.81	100.00	$Au_{194} Te_{290}Bi_{0100300}$
	_	_	49.30	_	_	2.99	47.72	100.00	$Au_{193} Te_{289}Bi_{011300}$
	_	_	_	_	_	43.73	56.27	100.00	$Bi_{0.95}Te_{2.00}$
Теллурид	_	_	_	_	_	43.76	56.24	100.00	Bi _{0.95} Te _{2.00}
висмута	_	_	_	_	_	43.71	56.29	100.00	Bi _{0.95} Te _{2.00}
	_	18.80	_	_	_	_	81.20	100.00	$Ni_{101}Te_{200}$
	_	18.82	_	_	_	_	81.18	100.00	$Ni_{1,01}Te_{2,00}$
	_	19.74	_	_	_	_	80.26	100.00	Ni _{1.07} Te _{2.00}
Мальдонит Монтбрейит Теллурид висмута Мелонит Фробергит Теллурид сурьмы и висмута	_	19.87	_	_	_	_	80.13	100.00	Ni _{1.08} Te _{2.00}
	_	17.56	_	_	_	_	82.44	100.00	Ni _{0.03} Te _{2.00}
Мелонит	_	17.07	_	_	_	_	82.93	100.00	$Ni_{0.99}$ Te _{2.00}
	_	18.60	_	_	_	_	81.40	100.00	Ni _{0.00} Te _{2.00}
Мелонит	_	18.62	_	_	_	_	81.38	100.00	$Ni_{0.00}Te_{2.00}$
	_	17.80	_	_	_	_	82.20	100.00	Ni _{0.04} Te _{2.00}
	_	16.95	_	_	_	_	83.05	100.00	Ni _{0.85} Te _{2.00}
	15.76	_	_	_	_	_	84.24	100.00	Fe _{0.86} Te _{2.00}
Dr of -	15.78	_	_	_	_	_	84.22	100.00	Fe _{0.86} Te _{2.00}
Фробергит	15.85	_	_	_	_	_	84.15	100.00	Fe _{2.00}
	15.98	_	_	_	_	_	84.02	100.00	Fe Te
	_	_	_	_	19.01	25.23	55.76	100.00	Sb. Bi
Теллурид сурьмы и висмута	_	_	_	_	19.38	24.90	55.72	100.00	$Sb_{1.07} = 0.83(1.90 - 3.00)$
	_	_	_	_	25.80	16.02	58.18	100.00	SbBi
	_	_	_	_	26.22	16.07	57.71	100.00	Sb. Bi Te
	_	_	_	_	27.27	14.79	57.95	100.00	Sb. (Bi, (51)).94 3.00
	_	_	_	_	27.07	14.19	58.74	100.00	SbBi
	_	_	_	_	26.33	15.92	57.75	100.00	$\frac{(5 + 1.45 - 10.44)(1.89 + 10.30)}{\text{Sb}_{1.45} - 10.44}$
	_	_	_	_	27.52	13.80	58.67	100.00	$\frac{(2 + 1.43 + 20.50)(1.93 + 23.00)}{\text{Sb}_{1.43} - \text{Bi}_{1.43} - \text{Te}_{1.43} - \text{Te}_{1.43}}$
	_	_		64 20		нобн	35.80	100.00	$\begin{array}{c} (300_{1.47} \pm 1_{0.43})_{1.90} \pm 2_{3.00} \\ \hline Pb Te \end{array}$
		_		62.62	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ph Te			
Алтаит		_		62.00		н обн	38.00	100.00	Pb Te
	_	_	_	62.77	_	н обн	37.23	100.00	Ph Te
		_		62.32		н обн	37.68	100.00	Pb Te
	_	_	_	60.41	_	2.59	37.00	100.00	(Pb Bi) Te
		_	_	61.90	_	н обн	38.10	100.00	Ph Te
	_	_	_	59.67	_	4.13	36.20	100.00	(Ph Bi) Te
		_	_	57.36	_	6.63	36.01	100.00	(Ph Ri) Te
	_	_	_	57.50	_	0.05	50.01	100.00	0.98 0.11 1.09 0.10

Примечания: н.обн. – элемент не обнаружен; прочерк – элемент не определялся.

Table 2. Composition of tellurium dioxide, wt. %.								
0	Те	Сумма	Кристаллохимическая формула					
19.06	81.1	100.16	Te _{1.07} O _{2.00}					
20.07	80.81	100.88	$Te_{101}O_{200}$					

Таблица 2. Химический состав диоксида теллура, масс. %.

Наблюдаемые взаимоотношения минералов золота, теллура, висмута (например, рис. 1 A, B, F, G) говорят о многостадийной истории рудогенеза. Понятно, что развитие рассматриваемой минерализации проходило после отложения крупнозернистого уранинита. К ранним теллуридам следует отнести монтбрейит, никелин, теллурид висмута, позднее отлагался теллурид сурьмы и висмута, последними – алтаит и фробергит. Что касается золота, то, вполне вероятно, оно неоднократно переотлагалось, сформировав несколько генераций.

Литература

- 1. Гребенкин Н.А., Леденева Н.В., Филиппов Н.Б., Житников В.А., Литвиненко В.И. Особенности уранзолоторудных проявлений группы Ромпас и объекта Палокас (Северная Финляндия) // Разведка и охрана недр. 2015. № 5. С. 11–15.
- 2. Калинин А.А. Золото в метаморфических комплексах северо-восточной части Фенноскандинавского щита. Апатиты. ФИЦ КНЦ РАН. 2018. 250 с.
- 3. Mineral deposits of Finland / Maier W.D., Lahtinen R., O'Brien H. (editors). Amsterdam: Elsevier, 2015. 792 p.
- Molnár, F.; Oduro, H.; Cook, N.D.J.; Pohjolainen, E.; Takács, Á.; O'Brien, H.; Pakkanen, L.; Johanson, B.; Wirth, R. Association of gold with uraninite and pyrobitumen in the metavolcanic rock hosted hydrothermal Au-U mineralisation at Rompas, Peräpohja Schist Belt, northern Finland // Mineral. Depos. 2016. V. 51. P. 681–702.
- Molnár, F.; O'Brien, H.; Stein, H., Cook, N.D.J.; Geochronology of Hydrothermal Processes Leading to the Formation of the Au–U Mineralization at the Rompas Prospect, Peräpohja Belt, Northern Finland: Application of Paired U–Pb Dating of Uraninite and Re–Os Dating of Molybdenite to the Identification of Multiple Hydrothermal Events in a Metamorphic Terrane //Minerals. 2017. V. 7(9). 171 p.